Skip to content

Module fl_server_core.models.model

View Source
# SPDX-FileCopyrightText: 2024 Benedikt Franke <benedikt.franke@dlr.de>
# SPDX-FileCopyrightText: 2024 Florian Heinrich <florian.heinrich@dlr.de>
#
# SPDX-License-Identifier: Apache-2.0

from copy import copy
from django.contrib.postgres.fields import ArrayField
from django.db.models import (
    BinaryField, CASCADE, CharField, ForeignKey, IntegerField, ManyToManyField, TextField, UUIDField
)
from polymorphic.models import PolymorphicModel
import torch
from torch import Tensor
from torch.nn import Module
from typing import List, Optional, Sequence, TypeVar
from uuid import uuid4

from ..utils.torch_serialization import (
    from_torch_module, to_torch_module,
    from_torch_tensor, to_torch_tensor,
    is_torchscript_instance
)

from .. import models as models
from .user import User


class Model(PolymorphicModel):
    """
    Base model class for all types of model models.
    """

    id: UUIDField = UUIDField(primary_key=True, editable=False, default=uuid4)
    """Unique identifier for the model."""
    owner: ForeignKey = ForeignKey(User, on_delete=CASCADE)
    """User who owns the model."""
    round: IntegerField = IntegerField()
    """Round number of the model."""
    weights: BinaryField = BinaryField()
    """Weights of the model."""

    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the model weights to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.weights)

    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the model weights from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.weights = from_torch_module(value)

    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the model.

        Returns:
            models.Training: The training associated with the model.
        """
        return models.Training.objects.filter(model=self).first()


class GlobalModel(Model):
    """
    Model class for global models.
    """

    name: CharField = CharField(max_length=256)
    """Name of the model."""
    description: TextField = TextField()
    """Description of the model."""
    # alternative to be postgres independent: create a new model for each nullable integer field
    # and map the corresponding list of integers to the model (but pay attention to the order)
    input_shape: ArrayField = ArrayField(IntegerField(null=True), null=True)
    """Input shape of the model."""
    preprocessing: BinaryField = BinaryField(null=True)
    """Preprocessing of the model."""

    def get_preprocessing_torch_model(self) -> torch.nn.Module:
        """
        Converts the preprocessing to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.preprocessing)

    def set_preprocessing_torch_model(self, value: torch.nn.Module):
        """
        Sets the preprocessing from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.preprocessing = from_torch_module(value)


class SWAGModel(GlobalModel):
    """
    Model class for SWAG models.
    """

    swag_first_moment: BinaryField = BinaryField()
    """First moment of the SWAG model."""
    swag_second_moment: BinaryField = BinaryField()
    """Second moment of the SWAG model."""

    @property
    def first_moment(self) -> Tensor:
        """
        Gets the first moment of the SWAG model.

        Returns:
            Tensor: The first moment of the SWAG model.
        """
        return to_torch_tensor(self.swag_first_moment)

    @first_moment.setter
    def first_moment(self, value: Tensor):
        """
        Sets the first moment of the SWAG model.

        Args:
            value (Tensor): The first moment of the SWAG model.
        """
        self.swag_first_moment = from_torch_tensor(value)

    @property
    def second_moment(self) -> Tensor:
        """
        Gets the second moment of the SWAG model.

        Returns:
            Tensor: The second moment of the SWAG model.
        """
        return to_torch_tensor(self.swag_second_moment)

    @second_moment.setter
    def second_moment(self, value: Tensor):
        """
        Sets the second moment of the SWAG model.

        Args:
            value (Tensor): The second moment of the SWAG model.
        """
        self.swag_second_moment = from_torch_tensor(value)


class MeanModel(GlobalModel):
    """
    Model class for mean models.
    """

    models: ManyToManyField = ManyToManyField(GlobalModel, related_name="mean_models")
    """Models of the mean model."""

    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the models to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        torch_models: List[torch.nn.Module] = [model.get_torch_model() for model in self.models.all()]
        model = MeanModule(torch_models)
        if all(is_torchscript_instance(m) for m in torch_models):
            return torch.jit.script(model)
        return model

    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the models from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        raise NotImplementedError()


class LocalModel(Model):
    """
    Model class for local models.
    """

    base_model: ForeignKey = ForeignKey(GlobalModel, on_delete=CASCADE)
    """Base model of the local model."""
    sample_size: IntegerField = IntegerField()
    """Sample size of the local model."""

    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the base model.

        Returns:
            models.Training: The training associated with the base model.
        """
        return models.Training.objects.filter(model=self.base_model).first()


TModel = TypeVar("TModel", bound=Model)


class MeanModule(Module):
    """
    PyTorch module for mean models.
    """

    def __init__(self, models: Sequence[torch.nn.Module]):
        """
        Initializes the mean models.

        Args:
            models (Sequence[torch.nn.Module]): The models of the mean model.
        """
        super().__init__()
        self.models = models
        """Models of the mean model."""

    def forward(self, input: Tensor) -> Tensor:
        """
        Forward pass of the mean models.

        Args:
            input (Tensor): The input tensor.

        Returns:
            Tensor: The output tensor.
        """
        return torch.stack([model(input) for model in self.models], dim=0).mean(dim=0)


def clone_model(model: Model) -> Model:
    """
    Copies a model instance in the database
    See https://docs.djangoproject.com/en/5.0/topics/db/queries/#copying-model-instances
    and stackoverflow.com/questions/4733609/how-do-i-clone-a-django-model-instance-object-and-save-it-to-the-database

    Args:
        model (Model):  the model to be copied

    Returns:
        Model: New Model instance that is a copy of the old one
    """
    model.save()
    new_model = copy(model)
    new_model.pk = None
    new_model.id = None
    new_model._state.adding = True
    try:
        delattr(new_model, '_prefetched_objects_cache')
    except AttributeError:
        pass
    new_model.save()
    new_model.owner = model.owner
    new_model.save()
    return new_model

Variables

TModel

Functions

clone_model

def clone_model(
    model: fl_server_core.models.model.Model
) -> fl_server_core.models.model.Model

Copies a model instance in the database

See https://docs.djangoproject.com/en/5.0/topics/db/queries/#copying-model-instances and stackoverflow.com/questions/4733609/how-do-i-clone-a-django-model-instance-object-and-save-it-to-the-database

Parameters:

Name Type Description Default
model Model the model to be copied None

Returns:

Type Description
Model New Model instance that is a copy of the old one
View Source
def clone_model(model: Model) -> Model:
    """
    Copies a model instance in the database
    See https://docs.djangoproject.com/en/5.0/topics/db/queries/#copying-model-instances
    and stackoverflow.com/questions/4733609/how-do-i-clone-a-django-model-instance-object-and-save-it-to-the-database

    Args:
        model (Model):  the model to be copied

    Returns:
        Model: New Model instance that is a copy of the old one
    """
    model.save()
    new_model = copy(model)
    new_model.pk = None
    new_model.id = None
    new_model._state.adding = True
    try:
        delattr(new_model, '_prefetched_objects_cache')
    except AttributeError:
        pass
    new_model.save()
    new_model.owner = model.owner
    new_model.save()
    return new_model

Classes

GlobalModel

class GlobalModel(
    *args,
    **kwargs
)

Model class for global models.

View Source
class GlobalModel(Model):
    """
    Model class for global models.
    """

    name: CharField = CharField(max_length=256)
    """Name of the model."""
    description: TextField = TextField()
    """Description of the model."""
    # alternative to be postgres independent: create a new model for each nullable integer field
    # and map the corresponding list of integers to the model (but pay attention to the order)
    input_shape: ArrayField = ArrayField(IntegerField(null=True), null=True)
    """Input shape of the model."""
    preprocessing: BinaryField = BinaryField(null=True)
    """Preprocessing of the model."""

    def get_preprocessing_torch_model(self) -> torch.nn.Module:
        """
        Converts the preprocessing to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.preprocessing)

    def set_preprocessing_torch_model(self, value: torch.nn.Module):
        """
        Sets the preprocessing from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.preprocessing = from_torch_module(value)

Ancestors (in MRO)

  • fl_server_core.models.model.Model
  • polymorphic.models.PolymorphicModel
  • django.db.models.base.Model

Descendants

  • fl_server_core.models.model.SWAGModel
  • fl_server_core.models.model.MeanModel

Class variables

DoesNotExist
Meta
MultipleObjectsReturned
globalmodel
localmodel
localmodel_set
mean_models
meanmodel
metric_set
model_ptr
model_ptr_id
objects
owner
owner_id
polymorphic_ctype
polymorphic_ctype_id
polymorphic_internal_model_fields
polymorphic_model_marker
polymorphic_primary_key_name
polymorphic_query_multiline_output
polymorphic_super_sub_accessors_replaced
swagmodel
training

Static methods

check

def check(
    **kwargs
)
View Source
    @classmethod
    def check(cls, **kwargs):
        errors = [
            *cls._check_swappable(),
            *cls._check_model(),
            *cls._check_managers(**kwargs),
        ]
        if not cls._meta.swapped:
            databases = kwargs.get("databases") or []
            errors += [
                *cls._check_fields(**kwargs),
                *cls._check_m2m_through_same_relationship(),
                *cls._check_long_column_names(databases),
            ]
            clash_errors = (
                *cls._check_id_field(),
                *cls._check_field_name_clashes(),
                *cls._check_model_name_db_lookup_clashes(),
                *cls._check_property_name_related_field_accessor_clashes(),
                *cls._check_single_primary_key(),
            )
            errors.extend(clash_errors)
            # If there are field name clashes, hide consequent column name
            # clashes.
            if not clash_errors:
                errors.extend(cls._check_column_name_clashes())
            errors += [
                *cls._check_index_together(),
                *cls._check_unique_together(),
                *cls._check_indexes(databases),
                *cls._check_ordering(),
                *cls._check_constraints(databases),
                *cls._check_default_pk(),
            ]

        return errors

from_db

def from_db(
    db,
    field_names,
    values
)
View Source
    @classmethod
    def from_db(cls, db, field_names, values):
        if len(values) != len(cls._meta.concrete_fields):
            values_iter = iter(values)
            values = [
                next(values_iter) if f.attname in field_names else DEFERRED
                for f in cls._meta.concrete_fields
            ]
        new = cls(*values)
        new._state.adding = False
        new._state.db = db
        return new

translate_polymorphic_Q_object

def translate_polymorphic_Q_object(
    q
)
View Source
    @classmethod
    def translate_polymorphic_Q_object(cls, q):
        return translate_polymorphic_Q_object(cls, q)

Instance variables

pk

Methods

clean

def clean(
    self
)

Hook for doing any extra model-wide validation after clean() has been

called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.

View Source
    def clean(self):
        """
        Hook for doing any extra model-wide validation after clean() has been
        called on every field by self.clean_fields. Any ValidationError raised
        by this method will not be associated with a particular field; it will
        have a special-case association with the field defined by NON_FIELD_ERRORS.
        """
        pass

clean_fields

def clean_fields(
    self,
    exclude=None
)

Clean all fields and raise a ValidationError containing a dict

of all validation errors if any occur.

View Source
    def clean_fields(self, exclude=None):
        """
        Clean all fields and raise a ValidationError containing a dict
        of all validation errors if any occur.
        """
        if exclude is None:
            exclude = []

        errors = {}
        for f in self._meta.fields:
            if f.name in exclude:
                continue
            # Skip validation for empty fields with blank=True. The developer
            # is responsible for making sure they have a valid value.
            raw_value = getattr(self, f.attname)
            if f.blank and raw_value in f.empty_values:
                continue
            try:
                setattr(self, f.attname, f.clean(raw_value, self))
            except ValidationError as e:
                errors[f.name] = e.error_list

        if errors:
            raise ValidationError(errors)

date_error_message

def date_error_message(
    self,
    lookup_type,
    field_name,
    unique_for
)
View Source
    def date_error_message(self, lookup_type, field_name, unique_for):
        opts = self._meta
        field = opts.get_field(field_name)
        return ValidationError(
            message=field.error_messages["unique_for_date"],
            code="unique_for_date",
            params={
                "model": self,
                "model_name": capfirst(opts.verbose_name),
                "lookup_type": lookup_type,
                "field": field_name,
                "field_label": capfirst(field.verbose_name),
                "date_field": unique_for,
                "date_field_label": capfirst(opts.get_field(unique_for).verbose_name),
            },
        )

delete

def delete(
    self,
    using=None,
    keep_parents=False
)
View Source
    def delete(self, using=None, keep_parents=False):
        if self.pk is None:
            raise ValueError(
                "%s object can't be deleted because its %s attribute is set "
                "to None." % (self._meta.object_name, self._meta.pk.attname)
            )
        using = using or router.db_for_write(self.__class__, instance=self)
        collector = Collector(using=using)
        collector.collect([self], keep_parents=keep_parents)
        return collector.delete()

description

def description(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

full_clean

def full_clean(
    self,
    exclude=None,
    validate_unique=True
)

Call clean_fields(), clean(), and validate_unique() on the model.

Raise a ValidationError for any errors that occur.

View Source
    def full_clean(self, exclude=None, validate_unique=True):
        """
        Call clean_fields(), clean(), and validate_unique() on the model.
        Raise a ValidationError for any errors that occur.
        """
        errors = {}
        if exclude is None:
            exclude = []
        else:
            exclude = list(exclude)

        try:
            self.clean_fields(exclude=exclude)
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Form.clean() is run even if other validation fails, so do the
        # same with Model.clean() for consistency.
        try:
            self.clean()
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Run unique checks, but only for fields that passed validation.
        if validate_unique:
            for name in errors:
                if name != NON_FIELD_ERRORS and name not in exclude:
                    exclude.append(name)
            try:
                self.validate_unique(exclude=exclude)
            except ValidationError as e:
                errors = e.update_error_dict(errors)

        if errors:
            raise ValidationError(errors)

get_deferred_fields

def get_deferred_fields(
    self
)

Return a set containing names of deferred fields for this instance.

View Source
    def get_deferred_fields(self):
        """
        Return a set containing names of deferred fields for this instance.
        """
        return {
            f.attname
            for f in self._meta.concrete_fields
            if f.attname not in self.__dict__
        }

get_preprocessing_torch_model

def get_preprocessing_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the preprocessing to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_preprocessing_torch_model(self) -> torch.nn.Module:
        """
        Converts the preprocessing to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.preprocessing)

get_real_concrete_instance_class

def get_real_concrete_instance_class(
    self
)
View Source
    def get_real_concrete_instance_class(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .model_class()
        )

get_real_concrete_instance_class_id

def get_real_concrete_instance_class_id(
    self
)
View Source
    def get_real_concrete_instance_class_id(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .pk
        )

get_real_instance

def get_real_instance(
    self
)

Upcast an object to it's actual type.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the complete object with it's real class/type and all fields may be retrieved with this method.

.. note:: Each method call executes one db query (if necessary). Use the :meth:~polymorphic.managers.PolymorphicQuerySet.get_real_instances to upcast a complete list in a single efficient query.

View Source
    def get_real_instance(self):
        """
        Upcast an object to it's actual type.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the complete object with it's real class/type
        and all fields may be retrieved with this method.

        .. note::
            Each method call executes one db query (if necessary).
            Use the :meth:`~polymorphic.managers.PolymorphicQuerySet.get_real_instances`
            to upcast a complete list in a single efficient query.
        """
        real_model = self.get_real_instance_class()
        if real_model == self.__class__:
            return self
        return real_model.objects.db_manager(self._state.db).get(pk=self.pk)

get_real_instance_class

def get_real_instance_class(
    self
)

Return the actual model type of the object.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the real class/type of these objects may be determined using this method.

View Source
    def get_real_instance_class(self):
        """
        Return the actual model type of the object.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the real class/type of these objects may be
        determined using this method.
        """
        if self.polymorphic_ctype_id is None:
            raise PolymorphicTypeUndefined(
                (
                    "The model {}#{} does not have a `polymorphic_ctype_id` value defined.\n"
                    "If you created models outside polymorphic, e.g. through an import or migration, "
                    "make sure the `polymorphic_ctype_id` field points to the ContentType ID of the model subclass."
                ).format(self.__class__.__name__, self.pk)
            )

        # the following line would be the easiest way to do this, but it produces sql queries
        # return self.polymorphic_ctype.model_class()
        # so we use the following version, which uses the ContentType manager cache.
        # Note that model_class() can return None for stale content types;
        # when the content type record still exists but no longer refers to an existing model.
        model = (
            ContentType.objects.db_manager(self._state.db)
            .get_for_id(self.polymorphic_ctype_id)
            .model_class()
        )

        # Protect against bad imports (dumpdata without --natural) or other
        # issues missing with the ContentType models.
        if (
            model is not None
            and not issubclass(model, self.__class__)
            and (
                self.__class__._meta.proxy_for_model is None
                or not issubclass(model, self.__class__._meta.proxy_for_model)
            )
        ):
            raise PolymorphicTypeInvalid(
                "ContentType {} for {} #{} does not point to a subclass!".format(
                    self.polymorphic_ctype_id, model, self.pk
                )
            )

        return model

get_torch_model

def get_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the model weights to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the model weights to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.weights)

get_training

def get_training(
    self
) -> Optional[ForwardRef('models.Training')]

Gets the training associated with the model.

Returns:

Type Description
models.Training The training associated with the model.
View Source
    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the model.

        Returns:
            models.Training: The training associated with the model.
        """
        return models.Training.objects.filter(model=self).first()

id

def id(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

input_shape

def input_shape(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

is_global_model

def is_global_model(
    self
)

Checks if the model is a global model.

Returns:

Type Description
bool True if the model is a global model, False otherwise.
View Source
    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

is_local_model

def is_local_model(
    self
)

Checks if the model is a local model.

Returns:

Type Description
bool True if the model is a local model, False otherwise.
View Source
    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

name

def name(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

pre_save_polymorphic

def pre_save_polymorphic(
    self,
    using='default'
)

Make sure the polymorphic_ctype value is correctly set on this model.

View Source
    def pre_save_polymorphic(self, using=DEFAULT_DB_ALIAS):
        """
        Make sure the ``polymorphic_ctype`` value is correctly set on this model.
        """
        # This function may be called manually in special use-cases. When the object
        # is saved for the first time, we store its real class in polymorphic_ctype.
        # When the object later is retrieved by PolymorphicQuerySet, it uses this
        # field to figure out the real class of this object
        # (used by PolymorphicQuerySet._get_real_instances)
        if not self.polymorphic_ctype_id:
            self.polymorphic_ctype = ContentType.objects.db_manager(using).get_for_model(
                self, for_concrete_model=False
            )

prepare_database_save

def prepare_database_save(
    self,
    field
)
View Source
    def prepare_database_save(self, field):
        if self.pk is None:
            raise ValueError(
                "Unsaved model instance %r cannot be used in an ORM query." % self
            )
        return getattr(self, field.remote_field.get_related_field().attname)

preprocessing

def preprocessing(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

refresh_from_db

def refresh_from_db(
    self,
    using=None,
    fields=None
)

Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn't loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

View Source
    def refresh_from_db(self, using=None, fields=None):
        """
        Reload field values from the database.

        By default, the reloading happens from the database this instance was
        loaded from, or by the read router if this instance wasn't loaded from
        any database. The using parameter will override the default.

        Fields can be used to specify which fields to reload. The fields
        should be an iterable of field attnames. If fields is None, then
        all non-deferred fields are reloaded.

        When accessing deferred fields of an instance, the deferred loading
        of the field will call this method.
        """
        if fields is None:
            self._prefetched_objects_cache = {}
        else:
            prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
            for field in fields:
                if field in prefetched_objects_cache:
                    del prefetched_objects_cache[field]
                    fields.remove(field)
            if not fields:
                return
            if any(LOOKUP_SEP in f for f in fields):
                raise ValueError(
                    'Found "%s" in fields argument. Relations and transforms '
                    "are not allowed in fields." % LOOKUP_SEP
                )

        hints = {"instance": self}
        db_instance_qs = self.__class__._base_manager.db_manager(
            using, hints=hints
        ).filter(pk=self.pk)

        # Use provided fields, if not set then reload all non-deferred fields.
        deferred_fields = self.get_deferred_fields()
        if fields is not None:
            fields = list(fields)
            db_instance_qs = db_instance_qs.only(*fields)
        elif deferred_fields:
            fields = [
                f.attname
                for f in self._meta.concrete_fields
                if f.attname not in deferred_fields
            ]
            db_instance_qs = db_instance_qs.only(*fields)

        db_instance = db_instance_qs.get()
        non_loaded_fields = db_instance.get_deferred_fields()
        for field in self._meta.concrete_fields:
            if field.attname in non_loaded_fields:
                # This field wasn't refreshed - skip ahead.
                continue
            setattr(self, field.attname, getattr(db_instance, field.attname))
            # Clear cached foreign keys.
            if field.is_relation and field.is_cached(self):
                field.delete_cached_value(self)

        # Clear cached relations.
        for field in self._meta.related_objects:
            if field.is_cached(self):
                field.delete_cached_value(self)

        self._state.db = db_instance._state.db

round

def round(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

save

def save(
    self,
    *args,
    **kwargs
)

Calls :meth:pre_save_polymorphic and saves the model.

View Source
    def save(self, *args, **kwargs):
        """Calls :meth:`pre_save_polymorphic` and saves the model."""
        using = kwargs.get("using", self._state.db or DEFAULT_DB_ALIAS)
        self.pre_save_polymorphic(using=using)
        return super().save(*args, **kwargs)

save_base

def save_base(
    self,
    raw=False,
    force_insert=False,
    force_update=False,
    using=None,
    update_fields=None
)

Handle the parts of saving which should be done only once per save,

yet need to be done in raw saves, too. This includes some sanity checks and signal sending.

The 'raw' argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.

View Source
    def save_base(
        self,
        raw=False,
        force_insert=False,
        force_update=False,
        using=None,
        update_fields=None,
    ):
        """
        Handle the parts of saving which should be done only once per save,
        yet need to be done in raw saves, too. This includes some sanity
        checks and signal sending.

        The 'raw' argument is telling save_base not to save any parent
        models and not to do any changes to the values before save. This
        is used by fixture loading.
        """
        using = using or router.db_for_write(self.__class__, instance=self)
        assert not (force_insert and (force_update or update_fields))
        assert update_fields is None or update_fields
        cls = origin = self.__class__
        # Skip proxies, but keep the origin as the proxy model.
        if cls._meta.proxy:
            cls = cls._meta.concrete_model
        meta = cls._meta
        if not meta.auto_created:
            pre_save.send(
                sender=origin,
                instance=self,
                raw=raw,
                using=using,
                update_fields=update_fields,
            )
        # A transaction isn't needed if one query is issued.
        if meta.parents:
            context_manager = transaction.atomic(using=using, savepoint=False)
        else:
            context_manager = transaction.mark_for_rollback_on_error(using=using)
        with context_manager:
            parent_inserted = False
            if not raw:
                parent_inserted = self._save_parents(cls, using, update_fields)
            updated = self._save_table(
                raw,
                cls,
                force_insert or parent_inserted,
                force_update,
                using,
                update_fields,
            )
        # Store the database on which the object was saved
        self._state.db = using
        # Once saved, this is no longer a to-be-added instance.
        self._state.adding = False

        # Signal that the save is complete
        if not meta.auto_created:
            post_save.send(
                sender=origin,
                instance=self,
                created=(not updated),
                update_fields=update_fields,
                raw=raw,
                using=using,
            )

serializable_value

def serializable_value(
    self,
    field_name
)

Return the value of the field name for this instance. If the field is

a foreign key, return the id value instead of the object. If there's no Field object with this name on the model, return the model attribute's value.

Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.

View Source
    def serializable_value(self, field_name):
        """
        Return the value of the field name for this instance. If the field is
        a foreign key, return the id value instead of the object. If there's
        no Field object with this name on the model, return the model
        attribute's value.

        Used to serialize a field's value (in the serializer, or form output,
        for example). Normally, you would just access the attribute directly
        and not use this method.
        """
        try:
            field = self._meta.get_field(field_name)
        except FieldDoesNotExist:
            return getattr(self, field_name)
        return getattr(self, field.attname)

set_preprocessing_torch_model

def set_preprocessing_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the preprocessing from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_preprocessing_torch_model(self, value: torch.nn.Module):
        """
        Sets the preprocessing from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.preprocessing = from_torch_module(value)

set_torch_model

def set_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the model weights from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the model weights from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.weights = from_torch_module(value)

unique_error_message

def unique_error_message(
    self,
    model_class,
    unique_check
)
View Source
    def unique_error_message(self, model_class, unique_check):
        opts = model_class._meta

        params = {
            "model": self,
            "model_class": model_class,
            "model_name": capfirst(opts.verbose_name),
            "unique_check": unique_check,
        }

        # A unique field
        if len(unique_check) == 1:
            field = opts.get_field(unique_check[0])
            params["field_label"] = capfirst(field.verbose_name)
            return ValidationError(
                message=field.error_messages["unique"],
                code="unique",
                params=params,
            )

        # unique_together
        else:
            field_labels = [
                capfirst(opts.get_field(f).verbose_name) for f in unique_check
            ]
            params["field_labels"] = get_text_list(field_labels, _("and"))
            return ValidationError(
                message=_("%(model_name)s with this %(field_labels)s already exists."),
                code="unique_together",
                params=params,
            )

validate_unique

def validate_unique(
    self,
    exclude=None
)

Check unique constraints on the model and raise ValidationError if any

failed.

View Source
    def validate_unique(self, exclude=None):
        """
        Check unique constraints on the model and raise ValidationError if any
        failed.
        """
        unique_checks, date_checks = self._get_unique_checks(exclude=exclude)

        errors = self._perform_unique_checks(unique_checks)
        date_errors = self._perform_date_checks(date_checks)

        for k, v in date_errors.items():
            errors.setdefault(k, []).extend(v)

        if errors:
            raise ValidationError(errors)

weights

def weights(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

LocalModel

class LocalModel(
    *args,
    **kwargs
)

Model class for local models.

View Source
class LocalModel(Model):
    """
    Model class for local models.
    """

    base_model: ForeignKey = ForeignKey(GlobalModel, on_delete=CASCADE)
    """Base model of the local model."""
    sample_size: IntegerField = IntegerField()
    """Sample size of the local model."""

    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the base model.

        Returns:
            models.Training: The training associated with the base model.
        """
        return models.Training.objects.filter(model=self.base_model).first()

Ancestors (in MRO)

  • fl_server_core.models.model.Model
  • polymorphic.models.PolymorphicModel
  • django.db.models.base.Model

Class variables

DoesNotExist
Meta
MultipleObjectsReturned
base_model
base_model_id
globalmodel
localmodel
metric_set
model_ptr
model_ptr_id
objects
owner
owner_id
polymorphic_ctype
polymorphic_ctype_id
polymorphic_internal_model_fields
polymorphic_model_marker
polymorphic_primary_key_name
polymorphic_query_multiline_output
polymorphic_super_sub_accessors_replaced
training

Static methods

check

def check(
    **kwargs
)
View Source
    @classmethod
    def check(cls, **kwargs):
        errors = [
            *cls._check_swappable(),
            *cls._check_model(),
            *cls._check_managers(**kwargs),
        ]
        if not cls._meta.swapped:
            databases = kwargs.get("databases") or []
            errors += [
                *cls._check_fields(**kwargs),
                *cls._check_m2m_through_same_relationship(),
                *cls._check_long_column_names(databases),
            ]
            clash_errors = (
                *cls._check_id_field(),
                *cls._check_field_name_clashes(),
                *cls._check_model_name_db_lookup_clashes(),
                *cls._check_property_name_related_field_accessor_clashes(),
                *cls._check_single_primary_key(),
            )
            errors.extend(clash_errors)
            # If there are field name clashes, hide consequent column name
            # clashes.
            if not clash_errors:
                errors.extend(cls._check_column_name_clashes())
            errors += [
                *cls._check_index_together(),
                *cls._check_unique_together(),
                *cls._check_indexes(databases),
                *cls._check_ordering(),
                *cls._check_constraints(databases),
                *cls._check_default_pk(),
            ]

        return errors

from_db

def from_db(
    db,
    field_names,
    values
)
View Source
    @classmethod
    def from_db(cls, db, field_names, values):
        if len(values) != len(cls._meta.concrete_fields):
            values_iter = iter(values)
            values = [
                next(values_iter) if f.attname in field_names else DEFERRED
                for f in cls._meta.concrete_fields
            ]
        new = cls(*values)
        new._state.adding = False
        new._state.db = db
        return new

translate_polymorphic_Q_object

def translate_polymorphic_Q_object(
    q
)
View Source
    @classmethod
    def translate_polymorphic_Q_object(cls, q):
        return translate_polymorphic_Q_object(cls, q)

Instance variables

pk

Methods

clean

def clean(
    self
)

Hook for doing any extra model-wide validation after clean() has been

called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.

View Source
    def clean(self):
        """
        Hook for doing any extra model-wide validation after clean() has been
        called on every field by self.clean_fields. Any ValidationError raised
        by this method will not be associated with a particular field; it will
        have a special-case association with the field defined by NON_FIELD_ERRORS.
        """
        pass

clean_fields

def clean_fields(
    self,
    exclude=None
)

Clean all fields and raise a ValidationError containing a dict

of all validation errors if any occur.

View Source
    def clean_fields(self, exclude=None):
        """
        Clean all fields and raise a ValidationError containing a dict
        of all validation errors if any occur.
        """
        if exclude is None:
            exclude = []

        errors = {}
        for f in self._meta.fields:
            if f.name in exclude:
                continue
            # Skip validation for empty fields with blank=True. The developer
            # is responsible for making sure they have a valid value.
            raw_value = getattr(self, f.attname)
            if f.blank and raw_value in f.empty_values:
                continue
            try:
                setattr(self, f.attname, f.clean(raw_value, self))
            except ValidationError as e:
                errors[f.name] = e.error_list

        if errors:
            raise ValidationError(errors)

date_error_message

def date_error_message(
    self,
    lookup_type,
    field_name,
    unique_for
)
View Source
    def date_error_message(self, lookup_type, field_name, unique_for):
        opts = self._meta
        field = opts.get_field(field_name)
        return ValidationError(
            message=field.error_messages["unique_for_date"],
            code="unique_for_date",
            params={
                "model": self,
                "model_name": capfirst(opts.verbose_name),
                "lookup_type": lookup_type,
                "field": field_name,
                "field_label": capfirst(field.verbose_name),
                "date_field": unique_for,
                "date_field_label": capfirst(opts.get_field(unique_for).verbose_name),
            },
        )

delete

def delete(
    self,
    using=None,
    keep_parents=False
)
View Source
    def delete(self, using=None, keep_parents=False):
        if self.pk is None:
            raise ValueError(
                "%s object can't be deleted because its %s attribute is set "
                "to None." % (self._meta.object_name, self._meta.pk.attname)
            )
        using = using or router.db_for_write(self.__class__, instance=self)
        collector = Collector(using=using)
        collector.collect([self], keep_parents=keep_parents)
        return collector.delete()

full_clean

def full_clean(
    self,
    exclude=None,
    validate_unique=True
)

Call clean_fields(), clean(), and validate_unique() on the model.

Raise a ValidationError for any errors that occur.

View Source
    def full_clean(self, exclude=None, validate_unique=True):
        """
        Call clean_fields(), clean(), and validate_unique() on the model.
        Raise a ValidationError for any errors that occur.
        """
        errors = {}
        if exclude is None:
            exclude = []
        else:
            exclude = list(exclude)

        try:
            self.clean_fields(exclude=exclude)
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Form.clean() is run even if other validation fails, so do the
        # same with Model.clean() for consistency.
        try:
            self.clean()
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Run unique checks, but only for fields that passed validation.
        if validate_unique:
            for name in errors:
                if name != NON_FIELD_ERRORS and name not in exclude:
                    exclude.append(name)
            try:
                self.validate_unique(exclude=exclude)
            except ValidationError as e:
                errors = e.update_error_dict(errors)

        if errors:
            raise ValidationError(errors)

get_deferred_fields

def get_deferred_fields(
    self
)

Return a set containing names of deferred fields for this instance.

View Source
    def get_deferred_fields(self):
        """
        Return a set containing names of deferred fields for this instance.
        """
        return {
            f.attname
            for f in self._meta.concrete_fields
            if f.attname not in self.__dict__
        }

get_real_concrete_instance_class

def get_real_concrete_instance_class(
    self
)
View Source
    def get_real_concrete_instance_class(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .model_class()
        )

get_real_concrete_instance_class_id

def get_real_concrete_instance_class_id(
    self
)
View Source
    def get_real_concrete_instance_class_id(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .pk
        )

get_real_instance

def get_real_instance(
    self
)

Upcast an object to it's actual type.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the complete object with it's real class/type and all fields may be retrieved with this method.

.. note:: Each method call executes one db query (if necessary). Use the :meth:~polymorphic.managers.PolymorphicQuerySet.get_real_instances to upcast a complete list in a single efficient query.

View Source
    def get_real_instance(self):
        """
        Upcast an object to it's actual type.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the complete object with it's real class/type
        and all fields may be retrieved with this method.

        .. note::
            Each method call executes one db query (if necessary).
            Use the :meth:`~polymorphic.managers.PolymorphicQuerySet.get_real_instances`
            to upcast a complete list in a single efficient query.
        """
        real_model = self.get_real_instance_class()
        if real_model == self.__class__:
            return self
        return real_model.objects.db_manager(self._state.db).get(pk=self.pk)

get_real_instance_class

def get_real_instance_class(
    self
)

Return the actual model type of the object.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the real class/type of these objects may be determined using this method.

View Source
    def get_real_instance_class(self):
        """
        Return the actual model type of the object.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the real class/type of these objects may be
        determined using this method.
        """
        if self.polymorphic_ctype_id is None:
            raise PolymorphicTypeUndefined(
                (
                    "The model {}#{} does not have a `polymorphic_ctype_id` value defined.\n"
                    "If you created models outside polymorphic, e.g. through an import or migration, "
                    "make sure the `polymorphic_ctype_id` field points to the ContentType ID of the model subclass."
                ).format(self.__class__.__name__, self.pk)
            )

        # the following line would be the easiest way to do this, but it produces sql queries
        # return self.polymorphic_ctype.model_class()
        # so we use the following version, which uses the ContentType manager cache.
        # Note that model_class() can return None for stale content types;
        # when the content type record still exists but no longer refers to an existing model.
        model = (
            ContentType.objects.db_manager(self._state.db)
            .get_for_id(self.polymorphic_ctype_id)
            .model_class()
        )

        # Protect against bad imports (dumpdata without --natural) or other
        # issues missing with the ContentType models.
        if (
            model is not None
            and not issubclass(model, self.__class__)
            and (
                self.__class__._meta.proxy_for_model is None
                or not issubclass(model, self.__class__._meta.proxy_for_model)
            )
        ):
            raise PolymorphicTypeInvalid(
                "ContentType {} for {} #{} does not point to a subclass!".format(
                    self.polymorphic_ctype_id, model, self.pk
                )
            )

        return model

get_torch_model

def get_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the model weights to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the model weights to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.weights)

get_training

def get_training(
    self
) -> Optional[ForwardRef('models.Training')]

Gets the training associated with the base model.

Returns:

Type Description
models.Training The training associated with the base model.
View Source
    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the base model.

        Returns:
            models.Training: The training associated with the base model.
        """
        return models.Training.objects.filter(model=self.base_model).first()

id

def id(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

is_global_model

def is_global_model(
    self
)

Checks if the model is a global model.

Returns:

Type Description
bool True if the model is a global model, False otherwise.
View Source
    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

is_local_model

def is_local_model(
    self
)

Checks if the model is a local model.

Returns:

Type Description
bool True if the model is a local model, False otherwise.
View Source
    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

pre_save_polymorphic

def pre_save_polymorphic(
    self,
    using='default'
)

Make sure the polymorphic_ctype value is correctly set on this model.

View Source
    def pre_save_polymorphic(self, using=DEFAULT_DB_ALIAS):
        """
        Make sure the ``polymorphic_ctype`` value is correctly set on this model.
        """
        # This function may be called manually in special use-cases. When the object
        # is saved for the first time, we store its real class in polymorphic_ctype.
        # When the object later is retrieved by PolymorphicQuerySet, it uses this
        # field to figure out the real class of this object
        # (used by PolymorphicQuerySet._get_real_instances)
        if not self.polymorphic_ctype_id:
            self.polymorphic_ctype = ContentType.objects.db_manager(using).get_for_model(
                self, for_concrete_model=False
            )

prepare_database_save

def prepare_database_save(
    self,
    field
)
View Source
    def prepare_database_save(self, field):
        if self.pk is None:
            raise ValueError(
                "Unsaved model instance %r cannot be used in an ORM query." % self
            )
        return getattr(self, field.remote_field.get_related_field().attname)

refresh_from_db

def refresh_from_db(
    self,
    using=None,
    fields=None
)

Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn't loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

View Source
    def refresh_from_db(self, using=None, fields=None):
        """
        Reload field values from the database.

        By default, the reloading happens from the database this instance was
        loaded from, or by the read router if this instance wasn't loaded from
        any database. The using parameter will override the default.

        Fields can be used to specify which fields to reload. The fields
        should be an iterable of field attnames. If fields is None, then
        all non-deferred fields are reloaded.

        When accessing deferred fields of an instance, the deferred loading
        of the field will call this method.
        """
        if fields is None:
            self._prefetched_objects_cache = {}
        else:
            prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
            for field in fields:
                if field in prefetched_objects_cache:
                    del prefetched_objects_cache[field]
                    fields.remove(field)
            if not fields:
                return
            if any(LOOKUP_SEP in f for f in fields):
                raise ValueError(
                    'Found "%s" in fields argument. Relations and transforms '
                    "are not allowed in fields." % LOOKUP_SEP
                )

        hints = {"instance": self}
        db_instance_qs = self.__class__._base_manager.db_manager(
            using, hints=hints
        ).filter(pk=self.pk)

        # Use provided fields, if not set then reload all non-deferred fields.
        deferred_fields = self.get_deferred_fields()
        if fields is not None:
            fields = list(fields)
            db_instance_qs = db_instance_qs.only(*fields)
        elif deferred_fields:
            fields = [
                f.attname
                for f in self._meta.concrete_fields
                if f.attname not in deferred_fields
            ]
            db_instance_qs = db_instance_qs.only(*fields)

        db_instance = db_instance_qs.get()
        non_loaded_fields = db_instance.get_deferred_fields()
        for field in self._meta.concrete_fields:
            if field.attname in non_loaded_fields:
                # This field wasn't refreshed - skip ahead.
                continue
            setattr(self, field.attname, getattr(db_instance, field.attname))
            # Clear cached foreign keys.
            if field.is_relation and field.is_cached(self):
                field.delete_cached_value(self)

        # Clear cached relations.
        for field in self._meta.related_objects:
            if field.is_cached(self):
                field.delete_cached_value(self)

        self._state.db = db_instance._state.db

round

def round(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

sample_size

def sample_size(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

save

def save(
    self,
    *args,
    **kwargs
)

Calls :meth:pre_save_polymorphic and saves the model.

View Source
    def save(self, *args, **kwargs):
        """Calls :meth:`pre_save_polymorphic` and saves the model."""
        using = kwargs.get("using", self._state.db or DEFAULT_DB_ALIAS)
        self.pre_save_polymorphic(using=using)
        return super().save(*args, **kwargs)

save_base

def save_base(
    self,
    raw=False,
    force_insert=False,
    force_update=False,
    using=None,
    update_fields=None
)

Handle the parts of saving which should be done only once per save,

yet need to be done in raw saves, too. This includes some sanity checks and signal sending.

The 'raw' argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.

View Source
    def save_base(
        self,
        raw=False,
        force_insert=False,
        force_update=False,
        using=None,
        update_fields=None,
    ):
        """
        Handle the parts of saving which should be done only once per save,
        yet need to be done in raw saves, too. This includes some sanity
        checks and signal sending.

        The 'raw' argument is telling save_base not to save any parent
        models and not to do any changes to the values before save. This
        is used by fixture loading.
        """
        using = using or router.db_for_write(self.__class__, instance=self)
        assert not (force_insert and (force_update or update_fields))
        assert update_fields is None or update_fields
        cls = origin = self.__class__
        # Skip proxies, but keep the origin as the proxy model.
        if cls._meta.proxy:
            cls = cls._meta.concrete_model
        meta = cls._meta
        if not meta.auto_created:
            pre_save.send(
                sender=origin,
                instance=self,
                raw=raw,
                using=using,
                update_fields=update_fields,
            )
        # A transaction isn't needed if one query is issued.
        if meta.parents:
            context_manager = transaction.atomic(using=using, savepoint=False)
        else:
            context_manager = transaction.mark_for_rollback_on_error(using=using)
        with context_manager:
            parent_inserted = False
            if not raw:
                parent_inserted = self._save_parents(cls, using, update_fields)
            updated = self._save_table(
                raw,
                cls,
                force_insert or parent_inserted,
                force_update,
                using,
                update_fields,
            )
        # Store the database on which the object was saved
        self._state.db = using
        # Once saved, this is no longer a to-be-added instance.
        self._state.adding = False

        # Signal that the save is complete
        if not meta.auto_created:
            post_save.send(
                sender=origin,
                instance=self,
                created=(not updated),
                update_fields=update_fields,
                raw=raw,
                using=using,
            )

serializable_value

def serializable_value(
    self,
    field_name
)

Return the value of the field name for this instance. If the field is

a foreign key, return the id value instead of the object. If there's no Field object with this name on the model, return the model attribute's value.

Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.

View Source
    def serializable_value(self, field_name):
        """
        Return the value of the field name for this instance. If the field is
        a foreign key, return the id value instead of the object. If there's
        no Field object with this name on the model, return the model
        attribute's value.

        Used to serialize a field's value (in the serializer, or form output,
        for example). Normally, you would just access the attribute directly
        and not use this method.
        """
        try:
            field = self._meta.get_field(field_name)
        except FieldDoesNotExist:
            return getattr(self, field_name)
        return getattr(self, field.attname)

set_torch_model

def set_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the model weights from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the model weights from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.weights = from_torch_module(value)

unique_error_message

def unique_error_message(
    self,
    model_class,
    unique_check
)
View Source
    def unique_error_message(self, model_class, unique_check):
        opts = model_class._meta

        params = {
            "model": self,
            "model_class": model_class,
            "model_name": capfirst(opts.verbose_name),
            "unique_check": unique_check,
        }

        # A unique field
        if len(unique_check) == 1:
            field = opts.get_field(unique_check[0])
            params["field_label"] = capfirst(field.verbose_name)
            return ValidationError(
                message=field.error_messages["unique"],
                code="unique",
                params=params,
            )

        # unique_together
        else:
            field_labels = [
                capfirst(opts.get_field(f).verbose_name) for f in unique_check
            ]
            params["field_labels"] = get_text_list(field_labels, _("and"))
            return ValidationError(
                message=_("%(model_name)s with this %(field_labels)s already exists."),
                code="unique_together",
                params=params,
            )

validate_unique

def validate_unique(
    self,
    exclude=None
)

Check unique constraints on the model and raise ValidationError if any

failed.

View Source
    def validate_unique(self, exclude=None):
        """
        Check unique constraints on the model and raise ValidationError if any
        failed.
        """
        unique_checks, date_checks = self._get_unique_checks(exclude=exclude)

        errors = self._perform_unique_checks(unique_checks)
        date_errors = self._perform_date_checks(date_checks)

        for k, v in date_errors.items():
            errors.setdefault(k, []).extend(v)

        if errors:
            raise ValidationError(errors)

weights

def weights(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

MeanModel

class MeanModel(
    *args,
    **kwargs
)

Model class for mean models.

View Source
class MeanModel(GlobalModel):
    """
    Model class for mean models.
    """

    models: ManyToManyField = ManyToManyField(GlobalModel, related_name="mean_models")
    """Models of the mean model."""

    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the models to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        torch_models: List[torch.nn.Module] = [model.get_torch_model() for model in self.models.all()]
        model = MeanModule(torch_models)
        if all(is_torchscript_instance(m) for m in torch_models):
            return torch.jit.script(model)
        return model

    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the models from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        raise NotImplementedError()

Ancestors (in MRO)

  • fl_server_core.models.model.GlobalModel
  • fl_server_core.models.model.Model
  • polymorphic.models.PolymorphicModel
  • django.db.models.base.Model

Class variables

DoesNotExist
Meta
MultipleObjectsReturned
globalmodel
globalmodel_ptr
globalmodel_ptr_id
localmodel
localmodel_set
mean_models
meanmodel
metric_set
model_ptr
model_ptr_id
models
objects
owner
owner_id
polymorphic_ctype
polymorphic_ctype_id
polymorphic_internal_model_fields
polymorphic_model_marker
polymorphic_primary_key_name
polymorphic_query_multiline_output
polymorphic_super_sub_accessors_replaced
swagmodel
training

Static methods

check

def check(
    **kwargs
)
View Source
    @classmethod
    def check(cls, **kwargs):
        errors = [
            *cls._check_swappable(),
            *cls._check_model(),
            *cls._check_managers(**kwargs),
        ]
        if not cls._meta.swapped:
            databases = kwargs.get("databases") or []
            errors += [
                *cls._check_fields(**kwargs),
                *cls._check_m2m_through_same_relationship(),
                *cls._check_long_column_names(databases),
            ]
            clash_errors = (
                *cls._check_id_field(),
                *cls._check_field_name_clashes(),
                *cls._check_model_name_db_lookup_clashes(),
                *cls._check_property_name_related_field_accessor_clashes(),
                *cls._check_single_primary_key(),
            )
            errors.extend(clash_errors)
            # If there are field name clashes, hide consequent column name
            # clashes.
            if not clash_errors:
                errors.extend(cls._check_column_name_clashes())
            errors += [
                *cls._check_index_together(),
                *cls._check_unique_together(),
                *cls._check_indexes(databases),
                *cls._check_ordering(),
                *cls._check_constraints(databases),
                *cls._check_default_pk(),
            ]

        return errors

from_db

def from_db(
    db,
    field_names,
    values
)
View Source
    @classmethod
    def from_db(cls, db, field_names, values):
        if len(values) != len(cls._meta.concrete_fields):
            values_iter = iter(values)
            values = [
                next(values_iter) if f.attname in field_names else DEFERRED
                for f in cls._meta.concrete_fields
            ]
        new = cls(*values)
        new._state.adding = False
        new._state.db = db
        return new

translate_polymorphic_Q_object

def translate_polymorphic_Q_object(
    q
)
View Source
    @classmethod
    def translate_polymorphic_Q_object(cls, q):
        return translate_polymorphic_Q_object(cls, q)

Instance variables

pk

Methods

clean

def clean(
    self
)

Hook for doing any extra model-wide validation after clean() has been

called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.

View Source
    def clean(self):
        """
        Hook for doing any extra model-wide validation after clean() has been
        called on every field by self.clean_fields. Any ValidationError raised
        by this method will not be associated with a particular field; it will
        have a special-case association with the field defined by NON_FIELD_ERRORS.
        """
        pass

clean_fields

def clean_fields(
    self,
    exclude=None
)

Clean all fields and raise a ValidationError containing a dict

of all validation errors if any occur.

View Source
    def clean_fields(self, exclude=None):
        """
        Clean all fields and raise a ValidationError containing a dict
        of all validation errors if any occur.
        """
        if exclude is None:
            exclude = []

        errors = {}
        for f in self._meta.fields:
            if f.name in exclude:
                continue
            # Skip validation for empty fields with blank=True. The developer
            # is responsible for making sure they have a valid value.
            raw_value = getattr(self, f.attname)
            if f.blank and raw_value in f.empty_values:
                continue
            try:
                setattr(self, f.attname, f.clean(raw_value, self))
            except ValidationError as e:
                errors[f.name] = e.error_list

        if errors:
            raise ValidationError(errors)

date_error_message

def date_error_message(
    self,
    lookup_type,
    field_name,
    unique_for
)
View Source
    def date_error_message(self, lookup_type, field_name, unique_for):
        opts = self._meta
        field = opts.get_field(field_name)
        return ValidationError(
            message=field.error_messages["unique_for_date"],
            code="unique_for_date",
            params={
                "model": self,
                "model_name": capfirst(opts.verbose_name),
                "lookup_type": lookup_type,
                "field": field_name,
                "field_label": capfirst(field.verbose_name),
                "date_field": unique_for,
                "date_field_label": capfirst(opts.get_field(unique_for).verbose_name),
            },
        )

delete

def delete(
    self,
    using=None,
    keep_parents=False
)
View Source
    def delete(self, using=None, keep_parents=False):
        if self.pk is None:
            raise ValueError(
                "%s object can't be deleted because its %s attribute is set "
                "to None." % (self._meta.object_name, self._meta.pk.attname)
            )
        using = using or router.db_for_write(self.__class__, instance=self)
        collector = Collector(using=using)
        collector.collect([self], keep_parents=keep_parents)
        return collector.delete()

description

def description(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

full_clean

def full_clean(
    self,
    exclude=None,
    validate_unique=True
)

Call clean_fields(), clean(), and validate_unique() on the model.

Raise a ValidationError for any errors that occur.

View Source
    def full_clean(self, exclude=None, validate_unique=True):
        """
        Call clean_fields(), clean(), and validate_unique() on the model.
        Raise a ValidationError for any errors that occur.
        """
        errors = {}
        if exclude is None:
            exclude = []
        else:
            exclude = list(exclude)

        try:
            self.clean_fields(exclude=exclude)
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Form.clean() is run even if other validation fails, so do the
        # same with Model.clean() for consistency.
        try:
            self.clean()
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Run unique checks, but only for fields that passed validation.
        if validate_unique:
            for name in errors:
                if name != NON_FIELD_ERRORS and name not in exclude:
                    exclude.append(name)
            try:
                self.validate_unique(exclude=exclude)
            except ValidationError as e:
                errors = e.update_error_dict(errors)

        if errors:
            raise ValidationError(errors)

get_deferred_fields

def get_deferred_fields(
    self
)

Return a set containing names of deferred fields for this instance.

View Source
    def get_deferred_fields(self):
        """
        Return a set containing names of deferred fields for this instance.
        """
        return {
            f.attname
            for f in self._meta.concrete_fields
            if f.attname not in self.__dict__
        }

get_preprocessing_torch_model

def get_preprocessing_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the preprocessing to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_preprocessing_torch_model(self) -> torch.nn.Module:
        """
        Converts the preprocessing to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.preprocessing)

get_real_concrete_instance_class

def get_real_concrete_instance_class(
    self
)
View Source
    def get_real_concrete_instance_class(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .model_class()
        )

get_real_concrete_instance_class_id

def get_real_concrete_instance_class_id(
    self
)
View Source
    def get_real_concrete_instance_class_id(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .pk
        )

get_real_instance

def get_real_instance(
    self
)

Upcast an object to it's actual type.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the complete object with it's real class/type and all fields may be retrieved with this method.

.. note:: Each method call executes one db query (if necessary). Use the :meth:~polymorphic.managers.PolymorphicQuerySet.get_real_instances to upcast a complete list in a single efficient query.

View Source
    def get_real_instance(self):
        """
        Upcast an object to it's actual type.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the complete object with it's real class/type
        and all fields may be retrieved with this method.

        .. note::
            Each method call executes one db query (if necessary).
            Use the :meth:`~polymorphic.managers.PolymorphicQuerySet.get_real_instances`
            to upcast a complete list in a single efficient query.
        """
        real_model = self.get_real_instance_class()
        if real_model == self.__class__:
            return self
        return real_model.objects.db_manager(self._state.db).get(pk=self.pk)

get_real_instance_class

def get_real_instance_class(
    self
)

Return the actual model type of the object.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the real class/type of these objects may be determined using this method.

View Source
    def get_real_instance_class(self):
        """
        Return the actual model type of the object.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the real class/type of these objects may be
        determined using this method.
        """
        if self.polymorphic_ctype_id is None:
            raise PolymorphicTypeUndefined(
                (
                    "The model {}#{} does not have a `polymorphic_ctype_id` value defined.\n"
                    "If you created models outside polymorphic, e.g. through an import or migration, "
                    "make sure the `polymorphic_ctype_id` field points to the ContentType ID of the model subclass."
                ).format(self.__class__.__name__, self.pk)
            )

        # the following line would be the easiest way to do this, but it produces sql queries
        # return self.polymorphic_ctype.model_class()
        # so we use the following version, which uses the ContentType manager cache.
        # Note that model_class() can return None for stale content types;
        # when the content type record still exists but no longer refers to an existing model.
        model = (
            ContentType.objects.db_manager(self._state.db)
            .get_for_id(self.polymorphic_ctype_id)
            .model_class()
        )

        # Protect against bad imports (dumpdata without --natural) or other
        # issues missing with the ContentType models.
        if (
            model is not None
            and not issubclass(model, self.__class__)
            and (
                self.__class__._meta.proxy_for_model is None
                or not issubclass(model, self.__class__._meta.proxy_for_model)
            )
        ):
            raise PolymorphicTypeInvalid(
                "ContentType {} for {} #{} does not point to a subclass!".format(
                    self.polymorphic_ctype_id, model, self.pk
                )
            )

        return model

get_torch_model

def get_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the models to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the models to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        torch_models: List[torch.nn.Module] = [model.get_torch_model() for model in self.models.all()]
        model = MeanModule(torch_models)
        if all(is_torchscript_instance(m) for m in torch_models):
            return torch.jit.script(model)
        return model

get_training

def get_training(
    self
) -> Optional[ForwardRef('models.Training')]

Gets the training associated with the model.

Returns:

Type Description
models.Training The training associated with the model.
View Source
    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the model.

        Returns:
            models.Training: The training associated with the model.
        """
        return models.Training.objects.filter(model=self).first()

id

def id(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

input_shape

def input_shape(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

is_global_model

def is_global_model(
    self
)

Checks if the model is a global model.

Returns:

Type Description
bool True if the model is a global model, False otherwise.
View Source
    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

is_local_model

def is_local_model(
    self
)

Checks if the model is a local model.

Returns:

Type Description
bool True if the model is a local model, False otherwise.
View Source
    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

name

def name(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

pre_save_polymorphic

def pre_save_polymorphic(
    self,
    using='default'
)

Make sure the polymorphic_ctype value is correctly set on this model.

View Source
    def pre_save_polymorphic(self, using=DEFAULT_DB_ALIAS):
        """
        Make sure the ``polymorphic_ctype`` value is correctly set on this model.
        """
        # This function may be called manually in special use-cases. When the object
        # is saved for the first time, we store its real class in polymorphic_ctype.
        # When the object later is retrieved by PolymorphicQuerySet, it uses this
        # field to figure out the real class of this object
        # (used by PolymorphicQuerySet._get_real_instances)
        if not self.polymorphic_ctype_id:
            self.polymorphic_ctype = ContentType.objects.db_manager(using).get_for_model(
                self, for_concrete_model=False
            )

prepare_database_save

def prepare_database_save(
    self,
    field
)
View Source
    def prepare_database_save(self, field):
        if self.pk is None:
            raise ValueError(
                "Unsaved model instance %r cannot be used in an ORM query." % self
            )
        return getattr(self, field.remote_field.get_related_field().attname)

preprocessing

def preprocessing(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

refresh_from_db

def refresh_from_db(
    self,
    using=None,
    fields=None
)

Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn't loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

View Source
    def refresh_from_db(self, using=None, fields=None):
        """
        Reload field values from the database.

        By default, the reloading happens from the database this instance was
        loaded from, or by the read router if this instance wasn't loaded from
        any database. The using parameter will override the default.

        Fields can be used to specify which fields to reload. The fields
        should be an iterable of field attnames. If fields is None, then
        all non-deferred fields are reloaded.

        When accessing deferred fields of an instance, the deferred loading
        of the field will call this method.
        """
        if fields is None:
            self._prefetched_objects_cache = {}
        else:
            prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
            for field in fields:
                if field in prefetched_objects_cache:
                    del prefetched_objects_cache[field]
                    fields.remove(field)
            if not fields:
                return
            if any(LOOKUP_SEP in f for f in fields):
                raise ValueError(
                    'Found "%s" in fields argument. Relations and transforms '
                    "are not allowed in fields." % LOOKUP_SEP
                )

        hints = {"instance": self}
        db_instance_qs = self.__class__._base_manager.db_manager(
            using, hints=hints
        ).filter(pk=self.pk)

        # Use provided fields, if not set then reload all non-deferred fields.
        deferred_fields = self.get_deferred_fields()
        if fields is not None:
            fields = list(fields)
            db_instance_qs = db_instance_qs.only(*fields)
        elif deferred_fields:
            fields = [
                f.attname
                for f in self._meta.concrete_fields
                if f.attname not in deferred_fields
            ]
            db_instance_qs = db_instance_qs.only(*fields)

        db_instance = db_instance_qs.get()
        non_loaded_fields = db_instance.get_deferred_fields()
        for field in self._meta.concrete_fields:
            if field.attname in non_loaded_fields:
                # This field wasn't refreshed - skip ahead.
                continue
            setattr(self, field.attname, getattr(db_instance, field.attname))
            # Clear cached foreign keys.
            if field.is_relation and field.is_cached(self):
                field.delete_cached_value(self)

        # Clear cached relations.
        for field in self._meta.related_objects:
            if field.is_cached(self):
                field.delete_cached_value(self)

        self._state.db = db_instance._state.db

round

def round(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

save

def save(
    self,
    *args,
    **kwargs
)

Calls :meth:pre_save_polymorphic and saves the model.

View Source
    def save(self, *args, **kwargs):
        """Calls :meth:`pre_save_polymorphic` and saves the model."""
        using = kwargs.get("using", self._state.db or DEFAULT_DB_ALIAS)
        self.pre_save_polymorphic(using=using)
        return super().save(*args, **kwargs)

save_base

def save_base(
    self,
    raw=False,
    force_insert=False,
    force_update=False,
    using=None,
    update_fields=None
)

Handle the parts of saving which should be done only once per save,

yet need to be done in raw saves, too. This includes some sanity checks and signal sending.

The 'raw' argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.

View Source
    def save_base(
        self,
        raw=False,
        force_insert=False,
        force_update=False,
        using=None,
        update_fields=None,
    ):
        """
        Handle the parts of saving which should be done only once per save,
        yet need to be done in raw saves, too. This includes some sanity
        checks and signal sending.

        The 'raw' argument is telling save_base not to save any parent
        models and not to do any changes to the values before save. This
        is used by fixture loading.
        """
        using = using or router.db_for_write(self.__class__, instance=self)
        assert not (force_insert and (force_update or update_fields))
        assert update_fields is None or update_fields
        cls = origin = self.__class__
        # Skip proxies, but keep the origin as the proxy model.
        if cls._meta.proxy:
            cls = cls._meta.concrete_model
        meta = cls._meta
        if not meta.auto_created:
            pre_save.send(
                sender=origin,
                instance=self,
                raw=raw,
                using=using,
                update_fields=update_fields,
            )
        # A transaction isn't needed if one query is issued.
        if meta.parents:
            context_manager = transaction.atomic(using=using, savepoint=False)
        else:
            context_manager = transaction.mark_for_rollback_on_error(using=using)
        with context_manager:
            parent_inserted = False
            if not raw:
                parent_inserted = self._save_parents(cls, using, update_fields)
            updated = self._save_table(
                raw,
                cls,
                force_insert or parent_inserted,
                force_update,
                using,
                update_fields,
            )
        # Store the database on which the object was saved
        self._state.db = using
        # Once saved, this is no longer a to-be-added instance.
        self._state.adding = False

        # Signal that the save is complete
        if not meta.auto_created:
            post_save.send(
                sender=origin,
                instance=self,
                created=(not updated),
                update_fields=update_fields,
                raw=raw,
                using=using,
            )

serializable_value

def serializable_value(
    self,
    field_name
)

Return the value of the field name for this instance. If the field is

a foreign key, return the id value instead of the object. If there's no Field object with this name on the model, return the model attribute's value.

Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.

View Source
    def serializable_value(self, field_name):
        """
        Return the value of the field name for this instance. If the field is
        a foreign key, return the id value instead of the object. If there's
        no Field object with this name on the model, return the model
        attribute's value.

        Used to serialize a field's value (in the serializer, or form output,
        for example). Normally, you would just access the attribute directly
        and not use this method.
        """
        try:
            field = self._meta.get_field(field_name)
        except FieldDoesNotExist:
            return getattr(self, field_name)
        return getattr(self, field.attname)

set_preprocessing_torch_model

def set_preprocessing_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the preprocessing from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_preprocessing_torch_model(self, value: torch.nn.Module):
        """
        Sets the preprocessing from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.preprocessing = from_torch_module(value)

set_torch_model

def set_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the models from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the models from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        raise NotImplementedError()

unique_error_message

def unique_error_message(
    self,
    model_class,
    unique_check
)
View Source
    def unique_error_message(self, model_class, unique_check):
        opts = model_class._meta

        params = {
            "model": self,
            "model_class": model_class,
            "model_name": capfirst(opts.verbose_name),
            "unique_check": unique_check,
        }

        # A unique field
        if len(unique_check) == 1:
            field = opts.get_field(unique_check[0])
            params["field_label"] = capfirst(field.verbose_name)
            return ValidationError(
                message=field.error_messages["unique"],
                code="unique",
                params=params,
            )

        # unique_together
        else:
            field_labels = [
                capfirst(opts.get_field(f).verbose_name) for f in unique_check
            ]
            params["field_labels"] = get_text_list(field_labels, _("and"))
            return ValidationError(
                message=_("%(model_name)s with this %(field_labels)s already exists."),
                code="unique_together",
                params=params,
            )

validate_unique

def validate_unique(
    self,
    exclude=None
)

Check unique constraints on the model and raise ValidationError if any

failed.

View Source
    def validate_unique(self, exclude=None):
        """
        Check unique constraints on the model and raise ValidationError if any
        failed.
        """
        unique_checks, date_checks = self._get_unique_checks(exclude=exclude)

        errors = self._perform_unique_checks(unique_checks)
        date_errors = self._perform_date_checks(date_checks)

        for k, v in date_errors.items():
            errors.setdefault(k, []).extend(v)

        if errors:
            raise ValidationError(errors)

weights

def weights(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

MeanModule

class MeanModule(
    models: Sequence[torch.nn.modules.module.Module]
)

PyTorch module for mean models.

View Source
class MeanModule(Module):
    """
    PyTorch module for mean models.
    """

    def __init__(self, models: Sequence[torch.nn.Module]):
        """
        Initializes the mean models.

        Args:
            models (Sequence[torch.nn.Module]): The models of the mean model.
        """
        super().__init__()
        self.models = models
        """Models of the mean model."""

    def forward(self, input: Tensor) -> Tensor:
        """
        Forward pass of the mean models.

        Args:
            input (Tensor): The input tensor.

        Returns:
            Tensor: The output tensor.
        """
        return torch.stack([model(input) for model in self.models], dim=0).mean(dim=0)

Ancestors (in MRO)

  • torch.nn.modules.module.Module

Class variables

T_destination
call_super_init
dump_patches

Methods

add_module

def add_module(
    self,
    name: str,
    module: Optional[ForwardRef('Module')]
) -> None

Add a child module to the current module.

The module can be accessed as an attribute using the given name.

Parameters:

Name Type Description Default
name str name of the child module. The child module can be
accessed from this module using the given name
None
module Module child module to be added to the module. None
View Source
    def add_module(self, name: str, module: Optional["Module"]) -> None:
        r"""Add a child module to the current module.

        The module can be accessed as an attribute using the given name.

        Args:
            name (str): name of the child module. The child module can be
                accessed from this module using the given name
            module (Module): child module to be added to the module.
        """
        if not isinstance(module, Module) and module is not None:
            raise TypeError(f"{torch.typename(module)} is not a Module subclass")
        elif not isinstance(name, str):
            raise TypeError(
                f"module name should be a string. Got {torch.typename(name)}"
            )
        elif hasattr(self, name) and name not in self._modules:
            raise KeyError(f"attribute '{name}' already exists")
        elif "." in name:
            raise KeyError(f'module name can\'t contain ".", got: {name}')
        elif name == "":
            raise KeyError('module name can\'t be empty string ""')
        for hook in _global_module_registration_hooks.values():
            output = hook(self, name, module)
            if output is not None:
                module = output
        self._modules[name] = module

apply

def apply(
    self: ~T,
    fn: Callable[[ForwardRef('Module')], NoneType]
) -> ~T

Apply fn recursively to every submodule (as returned by .children()) as well as self.

Typical use includes initializing the parameters of a model (see also :ref:nn-init-doc).

Parameters:

Name Type Description Default
fn ( None class:Module -> None): function to be applied to each submodule None

Returns:

Type Description
Module self
View Source
    def apply(self: T, fn: Callable[["Module"], None]) -> T:
        r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self.

        Typical use includes initializing the parameters of a model
        (see also :ref:`nn-init-doc`).

        Args:
            fn (:class:`Module` -> None): function to be applied to each submodule

        Returns:
            Module: self

        Example::

            >>> @torch.no_grad()
            >>> def init_weights(m):
            >>>     print(m)
            >>>     if type(m) == nn.Linear:
            >>>         m.weight.fill_(1.0)
            >>>         print(m.weight)
            >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
            >>> net.apply(init_weights)
            Linear(in_features=2, out_features=2, bias=True)
            Parameter containing:
            tensor([[1., 1.],
                    [1., 1.]], requires_grad=True)
            Linear(in_features=2, out_features=2, bias=True)
            Parameter containing:
            tensor([[1., 1.],
                    [1., 1.]], requires_grad=True)
            Sequential(
              (0): Linear(in_features=2, out_features=2, bias=True)
              (1): Linear(in_features=2, out_features=2, bias=True)
            )

        """
        for module in self.children():
            module.apply(fn)
        fn(self)
        return self

bfloat16

def bfloat16(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to bfloat16 datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def bfloat16(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t)

buffers

def buffers(
    self,
    recurse: bool = True
) -> Iterator[torch.Tensor]

Return an iterator over module buffers.

Parameters:

Name Type Description Default
recurse bool if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module.
None

Yields:

Type Description
torch.Tensor module buffer
View Source
    def buffers(self, recurse: bool = True) -> Iterator[Tensor]:
        r"""Return an iterator over module buffers.

        Args:
            recurse (bool): if True, then yields buffers of this module
                and all submodules. Otherwise, yields only buffers that
                are direct members of this module.

        Yields:
            torch.Tensor: module buffer

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for buf in model.buffers():
            >>>     print(type(buf), buf.size())
            <class 'torch.Tensor'> (20L,)
            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

        """
        for _, buf in self.named_buffers(recurse=recurse):
            yield buf

children

def children(
    self
) -> Iterator[ForwardRef('Module')]

Return an iterator over immediate children modules.

Yields:

Type Description
Module a child module
View Source
    def children(self) -> Iterator["Module"]:
        r"""Return an iterator over immediate children modules.

        Yields:
            Module: a child module
        """
        for name, module in self.named_children():
            yield module

compile

def compile(
    self,
    *args,
    **kwargs
)

Compile this Module's forward using :func:torch.compile.

This Module's __call__ method is compiled and all arguments are passed as-is to :func:torch.compile.

See :func:torch.compile for details on the arguments for this function.

View Source
    def compile(self, *args, **kwargs):
        """
        Compile this Module's forward using :func:`torch.compile`.

        This Module's `__call__` method is compiled and all arguments are passed as-is
        to :func:`torch.compile`.

        See :func:`torch.compile` for details on the arguments for this function.
        """
        self._compiled_call_impl = torch.compile(self._call_impl, *args, **kwargs)

cpu

def cpu(
    self: ~T
) -> ~T

Move all model parameters and buffers to the CPU.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def cpu(self: T) -> T:
        r"""Move all model parameters and buffers to the CPU.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.cpu())

cuda

def cuda(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def cuda(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the GPU.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on GPU while being optimized.

        .. note::
            This method modifies the module in-place.

        Args:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.cuda(device))

double

def double(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to double datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def double(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``double`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.double() if t.is_floating_point() else t)

eval

def eval(
    self: ~T
) -> ~T

Set the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout, :class:BatchNorm, etc.

This is equivalent with :meth:self.train(False) <torch.nn.Module.train>.

See :ref:locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.

Returns:

Type Description
Module self
View Source
    def eval(self: T) -> T:
        r"""Set the module in evaluation mode.

        This has any effect only on certain modules. See documentations of
        particular modules for details of their behaviors in training/evaluation
        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
        etc.

        This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.

        See :ref:`locally-disable-grad-doc` for a comparison between
        `.eval()` and several similar mechanisms that may be confused with it.

        Returns:
            Module: self
        """
        return self.train(False)

extra_repr

def extra_repr(
    self
) -> str

Set the extra representation of the module.

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

View Source
    def extra_repr(self) -> str:
        r"""Set the extra representation of the module.

        To print customized extra information, you should re-implement
        this method in your own modules. Both single-line and multi-line
        strings are acceptable.
        """
        return ""

float

def float(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to float datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def float(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``float`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.float() if t.is_floating_point() else t)

forward

def forward(
    self,
    input: torch.Tensor
) -> torch.Tensor

Forward pass of the mean models.

Parameters:

Name Type Description Default
input Tensor The input tensor. None

Returns:

Type Description
Tensor The output tensor.
View Source
    def forward(self, input: Tensor) -> Tensor:
        """
        Forward pass of the mean models.

        Args:
            input (Tensor): The input tensor.

        Returns:
            Tensor: The output tensor.
        """
        return torch.stack([model(input) for model in self.models], dim=0).mean(dim=0)

get_buffer

def get_buffer(
    self,
    target: str
) -> 'Tensor'

Return the buffer given by target if it exists, otherwise throw an error.

See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.

Parameters:

Name Type Description Default
target None The fully-qualified string name of the buffer
to look for. (See get_submodule for how to specify a
fully-qualified string.)
None

Returns:

Type Description
torch.Tensor The buffer referenced by target

Raises:

Type Description
AttributeError If the target string references an invalid
path or resolves to something that is not a
buffer
View Source
    def get_buffer(self, target: str) -> "Tensor":
        """Return the buffer given by ``target`` if it exists, otherwise throw an error.

        See the docstring for ``get_submodule`` for a more detailed
        explanation of this method's functionality as well as how to
        correctly specify ``target``.

        Args:
            target: The fully-qualified string name of the buffer
                to look for. (See ``get_submodule`` for how to specify a
                fully-qualified string.)

        Returns:
            torch.Tensor: The buffer referenced by ``target``

        Raises:
            AttributeError: If the target string references an invalid
                path or resolves to something that is not a
                buffer
        """
        module_path, _, buffer_name = target.rpartition(".")

        mod: torch.nn.Module = self.get_submodule(module_path)

        if not hasattr(mod, buffer_name):
            raise AttributeError(
                mod._get_name() + " has no attribute `" + buffer_name + "`"
            )

        buffer: torch.Tensor = getattr(mod, buffer_name)

        if buffer_name not in mod._buffers:
            raise AttributeError("`" + buffer_name + "` is not a buffer")

        return buffer

get_extra_state

def get_extra_state(
    self
) -> Any

Return any extra state to include in the module's state_dict.

Implement this and a corresponding :func:set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().

Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

Returns:

Type Description
object Any extra state to store in the module's state_dict
View Source
    def get_extra_state(self) -> Any:
        """Return any extra state to include in the module's state_dict.

        Implement this and a corresponding :func:`set_extra_state` for your module
        if you need to store extra state. This function is called when building the
        module's `state_dict()`.

        Note that extra state should be picklable to ensure working serialization
        of the state_dict. We only provide provide backwards compatibility guarantees
        for serializing Tensors; other objects may break backwards compatibility if
        their serialized pickled form changes.

        Returns:
            object: Any extra state to store in the module's state_dict
        """
        raise RuntimeError(
            "Reached a code path in Module.get_extra_state() that should never be called. "
            "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
            "to report this bug."
        )

get_parameter

def get_parameter(
    self,
    target: str
) -> 'Parameter'

Return the parameter given by target if it exists, otherwise throw an error.

See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.

Parameters:

Name Type Description Default
target None The fully-qualified string name of the Parameter
to look for. (See get_submodule for how to specify a
fully-qualified string.)
None

Returns:

Type Description
torch.nn.Parameter The Parameter referenced by target

Raises:

Type Description
AttributeError If the target string references an invalid
path or resolves to something that is not an
nn.Parameter
View Source
    def get_parameter(self, target: str) -> "Parameter":
        """Return the parameter given by ``target`` if it exists, otherwise throw an error.

        See the docstring for ``get_submodule`` for a more detailed
        explanation of this method's functionality as well as how to
        correctly specify ``target``.

        Args:
            target: The fully-qualified string name of the Parameter
                to look for. (See ``get_submodule`` for how to specify a
                fully-qualified string.)

        Returns:
            torch.nn.Parameter: The Parameter referenced by ``target``

        Raises:
            AttributeError: If the target string references an invalid
                path or resolves to something that is not an
                ``nn.Parameter``
        """
        module_path, _, param_name = target.rpartition(".")

        mod: torch.nn.Module = self.get_submodule(module_path)

        if not hasattr(mod, param_name):
            raise AttributeError(
                mod._get_name() + " has no attribute `" + param_name + "`"
            )

        param: torch.nn.Parameter = getattr(mod, param_name)

        if not isinstance(param, torch.nn.Parameter):
            raise AttributeError("`" + param_name + "` is not an " "nn.Parameter")

        return param

get_submodule

def get_submodule(
    self,
    target: str
) -> 'Module'

Return the submodule given by target if it exists, otherwise throw an error.

For example, let's say you have an nn.Module A that looks like this:

.. code-block:: text

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

Parameters:

Name Type Description Default
target None The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
None

Returns:

Type Description
torch.nn.Module The submodule referenced by target

Raises:

Type Description
AttributeError If the target string references an invalid
path or resolves to something that is not an
nn.Module
View Source
    def get_submodule(self, target: str) -> "Module":
        """Return the submodule given by ``target`` if it exists, otherwise throw an error.

        For example, let's say you have an ``nn.Module`` ``A`` that
        looks like this:

        .. code-block:: text

            A(
                (net_b): Module(
                    (net_c): Module(
                        (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
                    )
                    (linear): Linear(in_features=100, out_features=200, bias=True)
                )
            )

        (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
        submodule ``net_b``, which itself has two submodules ``net_c``
        and ``linear``. ``net_c`` then has a submodule ``conv``.)

        To check whether or not we have the ``linear`` submodule, we
        would call ``get_submodule("net_b.linear")``. To check whether
        we have the ``conv`` submodule, we would call
        ``get_submodule("net_b.net_c.conv")``.

        The runtime of ``get_submodule`` is bounded by the degree
        of module nesting in ``target``. A query against
        ``named_modules`` achieves the same result, but it is O(N) in
        the number of transitive modules. So, for a simple check to see
        if some submodule exists, ``get_submodule`` should always be
        used.

        Args:
            target: The fully-qualified string name of the submodule
                to look for. (See above example for how to specify a
                fully-qualified string.)

        Returns:
            torch.nn.Module: The submodule referenced by ``target``

        Raises:
            AttributeError: If the target string references an invalid
                path or resolves to something that is not an
                ``nn.Module``
        """
        if target == "":
            return self

        atoms: List[str] = target.split(".")
        mod: torch.nn.Module = self

        for item in atoms:
            if not hasattr(mod, item):
                raise AttributeError(
                    mod._get_name() + " has no " "attribute `" + item + "`"
                )

            mod = getattr(mod, item)

            if not isinstance(mod, torch.nn.Module):
                raise AttributeError("`" + item + "` is not " "an nn.Module")

        return mod

half

def half(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to half datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def half(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``half`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.half() if t.is_floating_point() else t)

ipu

def ipu(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the IPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the IPU.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on IPU while being optimized.

        .. note::
            This method modifies the module in-place.

        Arguments:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.ipu(device))

load_state_dict

def load_state_dict(
    self,
    state_dict: Mapping[str, Any],
    strict: bool = True,
    assign: bool = False
)

Copy parameters and buffers from :attr:state_dict into this module and its descendants.

If :attr:strict is True, then the keys of :attr:state_dict must exactly match the keys returned by this module's :meth:~torch.nn.Module.state_dict function.

.. warning:: If :attr:assign is True the optimizer must be created after the call to :attr:load_state_dict unless :func:~torch.__future__.get_swap_module_params_on_conversion is True.

Parameters:

Name Type Description Default
state_dict dict a dict containing parameters and
persistent buffers.
None
strict bool whether to strictly enforce that the keys
in :attr:state_dict match the keys returned by this module's
:meth:~torch.nn.Module.state_dict function. Default: True
None
assign bool When False, the properties of the tensors
in the current module are preserved while when True, the
properties of the Tensors in the state dict are preserved. The only
exception is the requires_grad field of :class:~torch.nn.Parameters
for which the value from the module is preserved.
Default: False
None

Returns:

Type Description
None NamedTuple with missing_keys and unexpected_keys fields:
missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided state_dict.
unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided state_dict.
View Source
    def load_state_dict(
        self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False
    ):
        r"""Copy parameters and buffers from :attr:`state_dict` into this module and its descendants.

        If :attr:`strict` is ``True``, then
        the keys of :attr:`state_dict` must exactly match the keys returned
        by this module's :meth:`~torch.nn.Module.state_dict` function.

        .. warning::
            If :attr:`assign` is ``True`` the optimizer must be created after
            the call to :attr:`load_state_dict` unless
            :func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.

        Args:
            state_dict (dict): a dict containing parameters and
                persistent buffers.
            strict (bool, optional): whether to strictly enforce that the keys
                in :attr:`state_dict` match the keys returned by this module's
                :meth:`~torch.nn.Module.state_dict` function. Default: ``True``
            assign (bool, optional): When ``False``, the properties of the tensors
                in the current module are preserved while when ``True``, the
                properties of the Tensors in the state dict are preserved. The only
                exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s
                for which the value from the module is preserved.
                Default: ``False``

        Returns:
            ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
                * **missing_keys** is a list of str containing any keys that are expected
                    by this module but missing from the provided ``state_dict``.
                * **unexpected_keys** is a list of str containing the keys that are not
                    expected by this module but present in the provided ``state_dict``.

        Note:
            If a parameter or buffer is registered as ``None`` and its corresponding key
            exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
            ``RuntimeError``.
        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(
                f"Expected state_dict to be dict-like, got {type(state_dict)}."
            )

        missing_keys: List[str] = []
        unexpected_keys: List[str] = []
        error_msgs: List[str] = []

        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = OrderedDict(state_dict)
        if metadata is not None:
            # mypy isn't aware that "_metadata" exists in state_dict
            state_dict._metadata = metadata  # type: ignore[attr-defined]

        def load(module, local_state_dict, prefix=""):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            if assign:
                local_metadata["assign_to_params_buffers"] = assign
            module._load_from_state_dict(
                local_state_dict,
                prefix,
                local_metadata,
                True,
                missing_keys,
                unexpected_keys,
                error_msgs,
            )
            for name, child in module._modules.items():
                if child is not None:
                    child_prefix = prefix + name + "."
                    child_state_dict = {
                        k: v
                        for k, v in local_state_dict.items()
                        if k.startswith(child_prefix)
                    }
                    load(child, child_state_dict, child_prefix)  # noqa: F821

            # Note that the hook can modify missing_keys and unexpected_keys.
            incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
            for hook in module._load_state_dict_post_hooks.values():
                out = hook(module, incompatible_keys)
                assert out is None, (
                    "Hooks registered with ``register_load_state_dict_post_hook`` are not"
                    "expected to return new values, if incompatible_keys need to be modified,"
                    "it should be done inplace."
                )

        load(self, state_dict)
        del load

        if strict:
            if len(unexpected_keys) > 0:
                error_msgs.insert(
                    0,
                    "Unexpected key(s) in state_dict: {}. ".format(
                        ", ".join(f'"{k}"' for k in unexpected_keys)
                    ),
                )
            if len(missing_keys) > 0:
                error_msgs.insert(
                    0,
                    "Missing key(s) in state_dict: {}. ".format(
                        ", ".join(f'"{k}"' for k in missing_keys)
                    ),
                )

        if len(error_msgs) > 0:
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(
                    self.__class__.__name__, "\n\t".join(error_msgs)
                )
            )
        return _IncompatibleKeys(missing_keys, unexpected_keys)

modules

def modules(
    self
) -> Iterator[ForwardRef('Module')]

Return an iterator over all modules in the network.

Yields:

Type Description
Module a module in the network
View Source
    def modules(self) -> Iterator["Module"]:
        r"""Return an iterator over all modules in the network.

        Yields:
            Module: a module in the network

        Note:
            Duplicate modules are returned only once. In the following
            example, ``l`` will be returned only once.

        Example::

            >>> l = nn.Linear(2, 2)
            >>> net = nn.Sequential(l, l)
            >>> for idx, m in enumerate(net.modules()):
            ...     print(idx, '->', m)

            0 -> Sequential(
              (0): Linear(in_features=2, out_features=2, bias=True)
              (1): Linear(in_features=2, out_features=2, bias=True)
            )
            1 -> Linear(in_features=2, out_features=2, bias=True)

        """
        for _, module in self.named_modules():
            yield module

mtia

def mtia(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the MTIA.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def mtia(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the MTIA.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on MTIA while being optimized.

        .. note::
            This method modifies the module in-place.

        Arguments:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.mtia(device))

named_buffers

def named_buffers(
    self,
    prefix: str = '',
    recurse: bool = True,
    remove_duplicate: bool = True
) -> Iterator[Tuple[str, torch.Tensor]]

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Parameters:

Name Type Description Default
prefix str prefix to prepend to all buffer names. None
recurse bool if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module. Defaults to True.
None
remove_duplicate bool whether to remove the duplicated buffers in the result. Defaults to True. True

Yields:

Type Description
None (str, torch.Tensor): Tuple containing the name and buffer
View Source
    def named_buffers(
        self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
    ) -> Iterator[Tuple[str, Tensor]]:
        r"""Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

        Args:
            prefix (str): prefix to prepend to all buffer names.
            recurse (bool, optional): if True, then yields buffers of this module
                and all submodules. Otherwise, yields only buffers that
                are direct members of this module. Defaults to True.
            remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.

        Yields:
            (str, torch.Tensor): Tuple containing the name and buffer

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for name, buf in self.named_buffers():
            >>>     if name in ['running_var']:
            >>>         print(buf.size())

        """
        gen = self._named_members(
            lambda module: module._buffers.items(),
            prefix=prefix,
            recurse=recurse,
            remove_duplicate=remove_duplicate,
        )
        yield from gen

named_children

def named_children(
    self
) -> Iterator[Tuple[str, ForwardRef('Module')]]

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields:

Type Description
None (str, Module): Tuple containing a name and child module
View Source
    def named_children(self) -> Iterator[Tuple[str, "Module"]]:
        r"""Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

        Yields:
            (str, Module): Tuple containing a name and child module

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for name, module in model.named_children():
            >>>     if name in ['conv4', 'conv5']:
            >>>         print(module)

        """
        memo = set()
        for name, module in self._modules.items():
            if module is not None and module not in memo:
                memo.add(module)
                yield name, module

named_modules

def named_modules(
    self,
    memo: Optional[Set[ForwardRef('Module')]] = None,
    prefix: str = '',
    remove_duplicate: bool = True
)

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Parameters:

Name Type Description Default
memo None a memo to store the set of modules already added to the result None
prefix None a prefix that will be added to the name of the module None
remove_duplicate None whether to remove the duplicated module instances in the result
or not
None

Yields:

Type Description
None (str, Module): Tuple of name and module
View Source
    def named_modules(
        self,
        memo: Optional[Set["Module"]] = None,
        prefix: str = "",
        remove_duplicate: bool = True,
    ):
        r"""Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

        Args:
            memo: a memo to store the set of modules already added to the result
            prefix: a prefix that will be added to the name of the module
            remove_duplicate: whether to remove the duplicated module instances in the result
                or not

        Yields:
            (str, Module): Tuple of name and module

        Note:
            Duplicate modules are returned only once. In the following
            example, ``l`` will be returned only once.

        Example::

            >>> l = nn.Linear(2, 2)
            >>> net = nn.Sequential(l, l)
            >>> for idx, m in enumerate(net.named_modules()):
            ...     print(idx, '->', m)

            0 -> ('', Sequential(
              (0): Linear(in_features=2, out_features=2, bias=True)
              (1): Linear(in_features=2, out_features=2, bias=True)
            ))
            1 -> ('0', Linear(in_features=2, out_features=2, bias=True))

        """
        if memo is None:
            memo = set()
        if self not in memo:
            if remove_duplicate:
                memo.add(self)
            yield prefix, self
            for name, module in self._modules.items():
                if module is None:
                    continue
                submodule_prefix = prefix + ("." if prefix else "") + name
                yield from module.named_modules(
                    memo, submodule_prefix, remove_duplicate
                )

named_parameters

def named_parameters(
    self,
    prefix: str = '',
    recurse: bool = True,
    remove_duplicate: bool = True
) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters:

Name Type Description Default
prefix str prefix to prepend to all parameter names. None
recurse bool if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
None
remove_duplicate bool whether to remove the duplicated
parameters in the result. Defaults to True.
None

Yields:

Type Description
None (str, Parameter): Tuple containing the name and parameter
View Source
    def named_parameters(
        self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
    ) -> Iterator[Tuple[str, Parameter]]:
        r"""Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

        Args:
            prefix (str): prefix to prepend to all parameter names.
            recurse (bool): if True, then yields parameters of this module
                and all submodules. Otherwise, yields only parameters that
                are direct members of this module.
            remove_duplicate (bool, optional): whether to remove the duplicated
                parameters in the result. Defaults to True.

        Yields:
            (str, Parameter): Tuple containing the name and parameter

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for name, param in self.named_parameters():
            >>>     if name in ['bias']:
            >>>         print(param.size())

        """
        gen = self._named_members(
            lambda module: module._parameters.items(),
            prefix=prefix,
            recurse=recurse,
            remove_duplicate=remove_duplicate,
        )
        yield from gen

parameters

def parameters(
    self,
    recurse: bool = True
) -> Iterator[torch.nn.parameter.Parameter]

Return an iterator over module parameters.

This is typically passed to an optimizer.

Parameters:

Name Type Description Default
recurse bool if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
None

Yields:

Type Description
Parameter module parameter
View Source
    def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
        r"""Return an iterator over module parameters.

        This is typically passed to an optimizer.

        Args:
            recurse (bool): if True, then yields parameters of this module
                and all submodules. Otherwise, yields only parameters that
                are direct members of this module.

        Yields:
            Parameter: module parameter

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for param in model.parameters():
            >>>     print(type(param), param.size())
            <class 'torch.Tensor'> (20L,)
            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

        """
        for name, param in self.named_parameters(recurse=recurse):
            yield param

register_backward_hook

def register_backward_hook(
    self,
    hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]]
) -> torch.utils.hooks.RemovableHandle

Register a backward hook on the module.

This function is deprecated in favor of :meth:~torch.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_backward_hook(
        self, hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]]
    ) -> RemovableHandle:
        r"""Register a backward hook on the module.

        This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
        the behavior of this function will change in future versions.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``

        """
        if self._is_full_backward_hook is True:
            raise RuntimeError(
                "Cannot use both regular backward hooks and full backward hooks on a "
                "single Module. Please use only one of them."
            )

        self._is_full_backward_hook = False

        handle = RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        return handle

register_buffer

def register_buffer(
    self,
    name: str,
    tensor: Optional[torch.Tensor],
    persistent: bool = True
) -> None

Add a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting :attr:persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's :attr:state_dict.

Buffers can be accessed as attributes using given names.

Parameters:

Name Type Description Default
name str name of the buffer. The buffer can be accessed
from this module using the given name
None
tensor Tensor or None buffer to be registered. If None, then operations
that run on buffers, such as :attr:cuda, are ignored. If None,
the buffer is not included in the module's :attr:state_dict.
None
persistent bool whether the buffer is part of this module's
:attr:state_dict.
None
View Source
    def register_buffer(
        self, name: str, tensor: Optional[Tensor], persistent: bool = True
    ) -> None:
        r"""Add a buffer to the module.

        This is typically used to register a buffer that should not to be
        considered a model parameter. For example, BatchNorm's ``running_mean``
        is not a parameter, but is part of the module's state. Buffers, by
        default, are persistent and will be saved alongside parameters. This
        behavior can be changed by setting :attr:`persistent` to ``False``. The
        only difference between a persistent buffer and a non-persistent buffer
        is that the latter will not be a part of this module's
        :attr:`state_dict`.

        Buffers can be accessed as attributes using given names.

        Args:
            name (str): name of the buffer. The buffer can be accessed
                from this module using the given name
            tensor (Tensor or None): buffer to be registered. If ``None``, then operations
                that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
                the buffer is **not** included in the module's :attr:`state_dict`.
            persistent (bool): whether the buffer is part of this module's
                :attr:`state_dict`.

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> self.register_buffer('running_mean', torch.zeros(num_features))

        """
        if persistent is False and isinstance(self, torch.jit.ScriptModule):
            raise RuntimeError("ScriptModule does not support non-persistent buffers")

        if "_buffers" not in self.__dict__:
            raise AttributeError("cannot assign buffer before Module.__init__() call")
        elif not isinstance(name, str):
            raise TypeError(
                f"buffer name should be a string. Got {torch.typename(name)}"
            )
        elif "." in name:
            raise KeyError('buffer name can\'t contain "."')
        elif name == "":
            raise KeyError('buffer name can\'t be empty string ""')
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError(f"attribute '{name}' already exists")
        elif tensor is not None and not isinstance(tensor, torch.Tensor):
            raise TypeError(
                f"cannot assign '{torch.typename(tensor)}' object to buffer '{name}' "
                "(torch Tensor or None required)"
            )
        else:
            for hook in _global_buffer_registration_hooks.values():
                output = hook(self, name, tensor)
                if output is not None:
                    tensor = output
            self._buffers[name] = tensor
            if persistent:
                self._non_persistent_buffers_set.discard(name)
            else:
                self._non_persistent_buffers_set.add(name)

register_forward_hook

def register_forward_hook(
    self,
    hook: Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]],
    *,
    prepend: bool = False,
    with_kwargs: bool = False,
    always_call: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a forward hook on the module.

The hook will be called every time after :func:forward has computed an output.

If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after :func:forward is called. The hook should have the following signature::

hook(module, args, output) -> None or modified output

If with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature::

hook(module, args, kwargs, output) -> None or modified output

Parameters:

Name Type Description Default
hook Callable The user defined hook to be registered. None
prepend bool If True, the provided hook will be fired
before all existing forward hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing forward hooks on
this :class:torch.nn.modules.Module. Note that global
forward hooks registered with
:func:register_module_forward_hook will fire before all hooks
registered by this method.
Default: False
None
with_kwargs bool If True, the hook will be passed the
kwargs given to the forward function.
Default: False
None
always_call bool If True the hook will be run regardless of
whether an exception is raised while calling the Module.
Default: False
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_forward_hook(
        self,
        hook: Union[
            Callable[[T, Tuple[Any, ...], Any], Optional[Any]],
            Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]],
        ],
        *,
        prepend: bool = False,
        with_kwargs: bool = False,
        always_call: bool = False,
    ) -> RemovableHandle:
        r"""Register a forward hook on the module.

        The hook will be called every time after :func:`forward` has computed an output.

        If ``with_kwargs`` is ``False`` or not specified, the input contains only
        the positional arguments given to the module. Keyword arguments won't be
        passed to the hooks and only to the ``forward``. The hook can modify the
        output. It can modify the input inplace but it will not have effect on
        forward since this is called after :func:`forward` is called. The hook
        should have the following signature::

            hook(module, args, output) -> None or modified output

        If ``with_kwargs`` is ``True``, the forward hook will be passed the
        ``kwargs`` given to the forward function and be expected to return the
        output possibly modified. The hook should have the following signature::

            hook(module, args, kwargs, output) -> None or modified output

        Args:
            hook (Callable): The user defined hook to be registered.
            prepend (bool): If ``True``, the provided ``hook`` will be fired
                before all existing ``forward`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``forward`` hooks on
                this :class:`torch.nn.modules.Module`. Note that global
                ``forward`` hooks registered with
                :func:`register_module_forward_hook` will fire before all hooks
                registered by this method.
                Default: ``False``
            with_kwargs (bool): If ``True``, the ``hook`` will be passed the
                kwargs given to the forward function.
                Default: ``False``
            always_call (bool): If ``True`` the ``hook`` will be run regardless of
                whether an exception is raised while calling the Module.
                Default: ``False``

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = RemovableHandle(
            self._forward_hooks,
            extra_dict=[
                self._forward_hooks_with_kwargs,
                self._forward_hooks_always_called,
            ],
        )
        self._forward_hooks[handle.id] = hook
        if with_kwargs:
            self._forward_hooks_with_kwargs[handle.id] = True
        if always_call:
            self._forward_hooks_always_called[handle.id] = True
        if prepend:
            self._forward_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_forward_pre_hook

def register_forward_pre_hook(
    self,
    hook: Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]],
    *,
    prepend: bool = False,
    with_kwargs: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a forward pre-hook on the module.

The hook will be called every time before :func:forward is invoked.

If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature::

hook(module, args) -> None or modified input

If with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature::

hook(module, args, kwargs) -> None or a tuple of modified input and kwargs

Parameters:

Name Type Description Default
hook Callable The user defined hook to be registered. None
prepend bool If true, the provided hook will be fired before
all existing forward_pre hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing forward_pre hooks
on this :class:torch.nn.modules.Module. Note that global
forward_pre hooks registered with
:func:register_module_forward_pre_hook will fire before all
hooks registered by this method.
Default: False
None
with_kwargs bool If true, the hook will be passed the kwargs
given to the forward function.
Default: False
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_forward_pre_hook(
        self,
        hook: Union[
            Callable[[T, Tuple[Any, ...]], Optional[Any]],
            Callable[
                [T, Tuple[Any, ...], Dict[str, Any]],
                Optional[Tuple[Any, Dict[str, Any]]],
            ],
        ],
        *,
        prepend: bool = False,
        with_kwargs: bool = False,
    ) -> RemovableHandle:
        r"""Register a forward pre-hook on the module.

        The hook will be called every time before :func:`forward` is invoked.


        If ``with_kwargs`` is false or not specified, the input contains only
        the positional arguments given to the module. Keyword arguments won't be
        passed to the hooks and only to the ``forward``. The hook can modify the
        input. User can either return a tuple or a single modified value in the
        hook. We will wrap the value into a tuple if a single value is returned
        (unless that value is already a tuple). The hook should have the
        following signature::

            hook(module, args) -> None or modified input

        If ``with_kwargs`` is true, the forward pre-hook will be passed the
        kwargs given to the forward function. And if the hook modifies the
        input, both the args and kwargs should be returned. The hook should have
        the following signature::

            hook(module, args, kwargs) -> None or a tuple of modified input and kwargs

        Args:
            hook (Callable): The user defined hook to be registered.
            prepend (bool): If true, the provided ``hook`` will be fired before
                all existing ``forward_pre`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``forward_pre`` hooks
                on this :class:`torch.nn.modules.Module`. Note that global
                ``forward_pre`` hooks registered with
                :func:`register_module_forward_pre_hook` will fire before all
                hooks registered by this method.
                Default: ``False``
            with_kwargs (bool): If true, the ``hook`` will be passed the kwargs
                given to the forward function.
                Default: ``False``

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = RemovableHandle(
            self._forward_pre_hooks, extra_dict=self._forward_pre_hooks_with_kwargs
        )
        self._forward_pre_hooks[handle.id] = hook
        if with_kwargs:
            self._forward_pre_hooks_with_kwargs[handle.id] = True

        if prepend:
            self._forward_pre_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_full_backward_hook

def register_full_backward_hook(
    self,
    hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]],
    prepend: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a backward hook on the module.

The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature::

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The :attr:grad_input and :attr:grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of :attr:grad_input in subsequent computations. :attr:grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in :attr:grad_input and :attr:grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.

.. warning :: Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Parameters:

Name Type Description Default
hook Callable The user-defined hook to be registered. None
prepend bool If true, the provided hook will be fired before
all existing backward hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing backward hooks on
this :class:torch.nn.modules.Module. Note that global
backward hooks registered with
:func:register_module_full_backward_hook will fire before
all hooks registered by this method.
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_full_backward_hook(
        self,
        hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],
        prepend: bool = False,
    ) -> RemovableHandle:
        r"""Register a backward hook on the module.

        The hook will be called every time the gradients with respect to a module
        are computed, i.e. the hook will execute if and only if the gradients with
        respect to module outputs are computed. The hook should have the following
        signature::

            hook(module, grad_input, grad_output) -> tuple(Tensor) or None

        The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
        with respect to the inputs and outputs respectively. The hook should
        not modify its arguments, but it can optionally return a new gradient with
        respect to the input that will be used in place of :attr:`grad_input` in
        subsequent computations. :attr:`grad_input` will only correspond to the inputs given
        as positional arguments and all kwarg arguments are ignored. Entries
        in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
        arguments.

        For technical reasons, when this hook is applied to a Module, its forward function will
        receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
        of each Tensor returned by the Module's forward function.

        .. warning ::
            Modifying inputs or outputs inplace is not allowed when using backward hooks and
            will raise an error.

        Args:
            hook (Callable): The user-defined hook to be registered.
            prepend (bool): If true, the provided ``hook`` will be fired before
                all existing ``backward`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``backward`` hooks on
                this :class:`torch.nn.modules.Module`. Note that global
                ``backward`` hooks registered with
                :func:`register_module_full_backward_hook` will fire before
                all hooks registered by this method.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``

        """
        if self._is_full_backward_hook is False:
            raise RuntimeError(
                "Cannot use both regular backward hooks and full backward hooks on a "
                "single Module. Please use only one of them."
            )

        self._is_full_backward_hook = True

        handle = RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        if prepend:
            self._backward_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_full_backward_pre_hook

def register_full_backward_pre_hook(
    self,
    hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]],
    prepend: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a backward pre-hook on the module.

The hook will be called every time the gradients for the module are computed. The hook should have the following signature::

hook(module, grad_output) -> tuple[Tensor] or None

The :attr:grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of :attr:grad_output in subsequent computations. Entries in :attr:grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.

.. warning :: Modifying inputs inplace is not allowed when using backward hooks and will raise an error.

Parameters:

Name Type Description Default
hook Callable The user-defined hook to be registered. None
prepend bool If true, the provided hook will be fired before
all existing backward_pre hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing backward_pre hooks
on this :class:torch.nn.modules.Module. Note that global
backward_pre hooks registered with
:func:register_module_full_backward_pre_hook will fire before
all hooks registered by this method.
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_full_backward_pre_hook(
        self,
        hook: Callable[["Module", _grad_t], Union[None, _grad_t]],
        prepend: bool = False,
    ) -> RemovableHandle:
        r"""Register a backward pre-hook on the module.

        The hook will be called every time the gradients for the module are computed.
        The hook should have the following signature::

            hook(module, grad_output) -> tuple[Tensor] or None

        The :attr:`grad_output` is a tuple. The hook should
        not modify its arguments, but it can optionally return a new gradient with
        respect to the output that will be used in place of :attr:`grad_output` in
        subsequent computations. Entries in :attr:`grad_output` will be ``None`` for
        all non-Tensor arguments.

        For technical reasons, when this hook is applied to a Module, its forward function will
        receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
        of each Tensor returned by the Module's forward function.

        .. warning ::
            Modifying inputs inplace is not allowed when using backward hooks and
            will raise an error.

        Args:
            hook (Callable): The user-defined hook to be registered.
            prepend (bool): If true, the provided ``hook`` will be fired before
                all existing ``backward_pre`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``backward_pre`` hooks
                on this :class:`torch.nn.modules.Module`. Note that global
                ``backward_pre`` hooks registered with
                :func:`register_module_full_backward_pre_hook` will fire before
                all hooks registered by this method.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``

        """
        handle = RemovableHandle(self._backward_pre_hooks)
        self._backward_pre_hooks[handle.id] = hook
        if prepend:
            self._backward_pre_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_load_state_dict_post_hook

def register_load_state_dict_post_hook(
    self,
    hook
)

Register a post-hook to be run after module's :meth:~nn.Module.load_state_dict is called.

It should have the following signature:: hook(module, incompatible_keys) -> None

The module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.

The given incompatible_keys can be modified inplace if needed.

Note that the checks performed when calling :func:load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_load_state_dict_post_hook(self, hook):
        r"""Register a post-hook to be run after module's :meth:`~nn.Module.load_state_dict` is called.

        It should have the following signature::
            hook(module, incompatible_keys) -> None

        The ``module`` argument is the current module that this hook is registered
        on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting
        of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``
        is a ``list`` of ``str`` containing the missing keys and
        ``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.

        The given incompatible_keys can be modified inplace if needed.

        Note that the checks performed when calling :func:`load_state_dict` with
        ``strict=True`` are affected by modifications the hook makes to
        ``missing_keys`` or ``unexpected_keys``, as expected. Additions to either
        set of keys will result in an error being thrown when ``strict=True``, and
        clearing out both missing and unexpected keys will avoid an error.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = RemovableHandle(self._load_state_dict_post_hooks)
        self._load_state_dict_post_hooks[handle.id] = hook
        return handle

register_load_state_dict_pre_hook

def register_load_state_dict_pre_hook(
    self,
    hook
)

Register a pre-hook to be run before module's :meth:~nn.Module.load_state_dict is called.

It should have the following signature:: hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950

Parameters:

Name Type Description Default
hook Callable Callable hook that will be invoked before
loading the state dict.
None
View Source
    def register_load_state_dict_pre_hook(self, hook):
        r"""Register a pre-hook to be run before module's :meth:`~nn.Module.load_state_dict` is called.

        It should have the following signature::
            hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None  # noqa: B950

        Arguments:
            hook (Callable): Callable hook that will be invoked before
                loading the state dict.
        """
        return self._register_load_state_dict_pre_hook(hook, with_module=True)

register_module

def register_module(
    self,
    name: str,
    module: Optional[ForwardRef('Module')]
) -> None

Alias for :func:add_module.

View Source
    def register_module(self, name: str, module: Optional["Module"]) -> None:
        r"""Alias for :func:`add_module`."""
        self.add_module(name, module)

register_parameter

def register_parameter(
    self,
    name: str,
    param: Optional[torch.nn.parameter.Parameter]
) -> None

Add a parameter to the module.

The parameter can be accessed as an attribute using given name.

Parameters:

Name Type Description Default
name str name of the parameter. The parameter can be accessed
from this module using the given name
None
param Parameter or None parameter to be added to the module. If
None, then operations that run on parameters, such as :attr:cuda,
are ignored. If None, the parameter is not included in the
module's :attr:state_dict.
None
View Source
    def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
        r"""Add a parameter to the module.

        The parameter can be accessed as an attribute using given name.

        Args:
            name (str): name of the parameter. The parameter can be accessed
                from this module using the given name
            param (Parameter or None): parameter to be added to the module. If
                ``None``, then operations that run on parameters, such as :attr:`cuda`,
                are ignored. If ``None``, the parameter is **not** included in the
                module's :attr:`state_dict`.
        """
        if "_parameters" not in self.__dict__:
            raise AttributeError(
                "cannot assign parameter before Module.__init__() call"
            )

        elif not isinstance(name, str):
            raise TypeError(
                f"parameter name should be a string. Got {torch.typename(name)}"
            )
        elif "." in name:
            raise KeyError('parameter name can\'t contain "."')
        elif name == "":
            raise KeyError('parameter name can\'t be empty string ""')
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError(f"attribute '{name}' already exists")

        if param is None:
            self._parameters[name] = None
        elif not isinstance(param, Parameter):
            raise TypeError(
                f"cannot assign '{torch.typename(param)}' object to parameter '{name}' "
                "(torch.nn.Parameter or None required)"
            )
        elif param.grad_fn:
            raise ValueError(
                f"Cannot assign non-leaf Tensor to parameter '{name}'. Model "
                f"parameters must be created explicitly. To express '{name}' "
                "as a function of another Tensor, compute the value in "
                "the forward() method."
            )
        else:
            for hook in _global_parameter_registration_hooks.values():
                output = hook(self, name, param)
                if output is not None:
                    param = output
            self._parameters[name] = param

register_state_dict_post_hook

def register_state_dict_post_hook(
    self,
    hook
)

Register a post-hook for the :meth:~torch.nn.Module.state_dict method.

It should have the following signature:: hook(module, state_dict, prefix, local_metadata) -> None

The registered hooks can modify the state_dict inplace.

View Source
    def register_state_dict_post_hook(self, hook):
        r"""Register a post-hook for the :meth:`~torch.nn.Module.state_dict` method.

        It should have the following signature::
            hook(module, state_dict, prefix, local_metadata) -> None

        The registered hooks can modify the ``state_dict`` inplace.
        """
        # In _register_state_dict_hook there was a bug described in
        # https://github.com/pytorch/pytorch/issues/117437 where the return value
        # was only respected for the root module but not child submodules.
        # We fix this in this public version by only allowing inplace modifications on
        # the state_dict by the hook. However, since hooks registered via both these
        # APIs will be added to `_state_dict_hooks` and the type of `_state_dict_hooks`
        # cannot be changed due to many dependencies on it, we mark a hook
        # as being registered via the public API by setting `_from_public_api` on it.
        # In the implementation of `state_dict`, if the callable does not have this
        # flag, the old behavior of respecting the return value will be preserved
        # for the root module, otherwise, we ensure that the hook returns None.
        hook._from_public_api = True
        handle = RemovableHandle(self._state_dict_hooks)
        self._state_dict_hooks[handle.id] = hook
        return handle

register_state_dict_pre_hook

def register_state_dict_pre_hook(
    self,
    hook
)

Register a pre-hook for the :meth:~torch.nn.Module.state_dict method.

It should have the following signature:: hook(module, prefix, keep_vars) -> None

The registered hooks can be used to perform pre-processing before the state_dict call is made.

View Source
    def register_state_dict_pre_hook(self, hook):
        r"""Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method.

        It should have the following signature::
            hook(module, prefix, keep_vars) -> None

        The registered hooks can be used to perform pre-processing before the ``state_dict``
        call is made.
        """
        handle = RemovableHandle(self._state_dict_pre_hooks)
        self._state_dict_pre_hooks[handle.id] = hook
        return handle

requires_grad_

def requires_grad_(
    self: ~T,
    requires_grad: bool = True
) -> ~T

Change if autograd should record operations on parameters in this module.

This method sets the parameters' :attr:requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

See :ref:locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.

Parameters:

Name Type Description Default
requires_grad bool whether autograd should record operations on
parameters in this module. Default: True.
None

Returns:

Type Description
Module self
View Source
    def requires_grad_(self: T, requires_grad: bool = True) -> T:
        r"""Change if autograd should record operations on parameters in this module.

        This method sets the parameters' :attr:`requires_grad` attributes
        in-place.

        This method is helpful for freezing part of the module for finetuning
        or training parts of a model individually (e.g., GAN training).

        See :ref:`locally-disable-grad-doc` for a comparison between
        `.requires_grad_()` and several similar mechanisms that may be confused with it.

        Args:
            requires_grad (bool): whether autograd should record operations on
                                  parameters in this module. Default: ``True``.

        Returns:
            Module: self
        """
        for p in self.parameters():
            p.requires_grad_(requires_grad)
        return self

set_extra_state

def set_extra_state(
    self,
    state: Any
) -> None

Set extra state contained in the loaded state_dict.

This function is called from :func:load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding

View Source
    def set_extra_state(self, state: Any) -> None:
        """Set extra state contained in the loaded `state_dict`.

        This function is called from :func:`load_state_dict` to handle any extra state
        found within the `state_dict`. Implement this function and a corresponding
        :func:`get_extra_state` for your module if you need to store extra state within its
        `state_dict`.

        Args:
            state (dict): Extra state from the `state_dict`
        """
        raise RuntimeError(
            "Reached a code path in Module.set_extra_state() that should never be called. "
            "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
            "to report this bug."
        )

set_submodule

def set_submodule(
    self,
    target: str,
    module: 'Module'
) -> None

Set the submodule given by target if it exists, otherwise throw an error.

For example, let's say you have an nn.Module A that looks like this:

.. code-block:: text

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To overide the Conv2d with a new submodule Linear, you would call set_submodule("net_b.net_c.conv", nn.Linear(33, 16)).

Parameters:

Name Type Description Default
target None The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
None
module None The module to set the submodule to. None

Raises:

Type Description
ValueError If the target string is empty
AttributeError If the target string references an invalid
path or resolves to something that is not an
nn.Module
View Source
    def set_submodule(self, target: str, module: "Module") -> None:
        """
        Set the submodule given by ``target`` if it exists, otherwise throw an error.

        For example, let's say you have an ``nn.Module`` ``A`` that
        looks like this:

        .. code-block:: text

            A(
                (net_b): Module(
                    (net_c): Module(
                        (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
                    )
                    (linear): Linear(in_features=100, out_features=200, bias=True)
                )
            )

        (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
        submodule ``net_b``, which itself has two submodules ``net_c``
        and ``linear``. ``net_c`` then has a submodule ``conv``.)

        To overide the ``Conv2d`` with a new submodule ``Linear``, you
        would call
        ``set_submodule("net_b.net_c.conv", nn.Linear(33, 16))``.

        Args:
            target: The fully-qualified string name of the submodule
                to look for. (See above example for how to specify a
                fully-qualified string.)
            module: The module to set the submodule to.

        Raises:
            ValueError: If the target string is empty
            AttributeError: If the target string references an invalid
                path or resolves to something that is not an
                ``nn.Module``
        """
        if target == "":
            raise ValueError("Cannot set the submodule without a target name!")

        atoms: List[str] = target.split(".")
        name = atoms.pop(-1)
        mod: torch.nn.Module = self

        for item in atoms:
            if not hasattr(mod, item):
                raise AttributeError(
                    mod._get_name() + " has no attribute `" + item + "`"
                )

            mod = getattr(mod, item)

            # Use isinstance instead of type here to also handle subclass of nn.Module
            if not isinstance(mod, torch.nn.Module):
                raise AttributeError("`" + item + "` is not an nn.Module")

        setattr(mod, name, module)

share_memory

def share_memory(
    self: ~T
) -> ~T

See :meth:torch.Tensor.share_memory_.

View Source
    def share_memory(self: T) -> T:
        r"""See :meth:`torch.Tensor.share_memory_`."""
        return self._apply(lambda t: t.share_memory_())

state_dict

def state_dict(
    self,
    *args,
    destination=None,
    prefix='',
    keep_vars=False
)

Return a dictionary containing references to the whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.

.. note:: The returned object is a shallow copy. It contains references to the module's parameters and buffers.

.. warning:: Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.

.. warning:: Please avoid the use of argument destination as it is not designed for end-users.

Parameters:

Name Type Description Default
destination dict If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an OrderedDict will be created and returned.
Default: None.
None
prefix str a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ''.
None
keep_vars bool by default the :class:~torch.Tensor s
returned in the state dict are detached from autograd. If it's
set to True, detaching will not be performed.
Default: False.
None

Returns:

Type Description
dict a dictionary containing a whole state of the module
View Source
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        r"""Return a dictionary containing references to the whole state of the module.

        Both parameters and persistent buffers (e.g. running averages) are
        included. Keys are corresponding parameter and buffer names.
        Parameters and buffers set to ``None`` are not included.

        .. note::
            The returned object is a shallow copy. It contains references
            to the module's parameters and buffers.

        .. warning::
            Currently ``state_dict()`` also accepts positional arguments for
            ``destination``, ``prefix`` and ``keep_vars`` in order. However,
            this is being deprecated and keyword arguments will be enforced in
            future releases.

        .. warning::
            Please avoid the use of argument ``destination`` as it is not
            designed for end-users.

        Args:
            destination (dict, optional): If provided, the state of module will
                be updated into the dict and the same object is returned.
                Otherwise, an ``OrderedDict`` will be created and returned.
                Default: ``None``.
            prefix (str, optional): a prefix added to parameter and buffer
                names to compose the keys in state_dict. Default: ``''``.
            keep_vars (bool, optional): by default the :class:`~torch.Tensor` s
                returned in the state dict are detached from autograd. If it's
                set to ``True``, detaching will not be performed.
                Default: ``False``.

        Returns:
            dict:
                a dictionary containing a whole state of the module

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> module.state_dict().keys()
            ['bias', 'weight']

        """
        # TODO: Remove `args` and the parsing logic when BC allows.
        if len(args) > 0:
            # DeprecationWarning is ignored by default
            warnings.warn(
                "Positional args are being deprecated, use kwargs instead. Refer to "
                "https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
                " for details.",
                FutureWarning,
                stacklevel=2,
            )
            if destination is None:
                destination = args[0]
            if len(args) > 1 and prefix == "":
                prefix = args[1]
            if len(args) > 2 and keep_vars is False:
                keep_vars = args[2]

        if destination is None:
            destination = OrderedDict()
            destination._metadata = OrderedDict()

        local_metadata = dict(version=self._version)
        if hasattr(destination, "_metadata"):
            destination._metadata[prefix[:-1]] = local_metadata

        for hook in self._state_dict_pre_hooks.values():
            hook(self, prefix, keep_vars)
        self._save_to_state_dict(destination, prefix, keep_vars)
        for name, module in self._modules.items():
            if module is not None:
                module.state_dict(
                    destination=destination,
                    prefix=prefix + name + ".",
                    keep_vars=keep_vars,
                )
        for hook in self._state_dict_hooks.values():
            hook_result = hook(self, destination, prefix, local_metadata)
            if not getattr(hook, "_from_public_api", False):
                if hook_result is not None:
                    destination = hook_result
            else:
                if hook_result is not None:
                    raise RuntimeError("state_dict post-hook must return None")
        return destination

to

def to(
    self,
    *args,
    **kwargs
)

Move and/or cast the parameters and buffers.

This can be called as

.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:

.. function:: to(dtype, non_blocking=False) :noindex:

.. function:: to(tensor, non_blocking=False) :noindex:

.. function:: to(memory_format=torch.channels_last) :noindex:

Its signature is similar to :meth:torch.Tensor.to, but only accepts floating point or complex :attr:dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to :attr:dtype (if given). The integral parameters and buffers will be moved :attr:device, if that is given, but with dtypes unchanged. When :attr:non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device ( None class:torch.device): the desired device of the parameters
and buffers in this module
None
dtype ( None class:torch.dtype): the desired floating point or complex dtype of
the parameters and buffers in this module
None
tensor torch.Tensor Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
None
memory_format ( None class:torch.memory_format): the desired memory
format for 4D parameters and buffers in this module (keyword
only argument)
None

Returns:

Type Description
Module self
View Source
    def to(self, *args, **kwargs):
        r"""Move and/or cast the parameters and buffers.

        This can be called as

        .. function:: to(device=None, dtype=None, non_blocking=False)
           :noindex:

        .. function:: to(dtype, non_blocking=False)
           :noindex:

        .. function:: to(tensor, non_blocking=False)
           :noindex:

        .. function:: to(memory_format=torch.channels_last)
           :noindex:

        Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
        floating point or complex :attr:`dtype`\ s. In addition, this method will
        only cast the floating point or complex parameters and buffers to :attr:`dtype`
        (if given). The integral parameters and buffers will be moved
        :attr:`device`, if that is given, but with dtypes unchanged. When
        :attr:`non_blocking` is set, it tries to convert/move asynchronously
        with respect to the host if possible, e.g., moving CPU Tensors with
        pinned memory to CUDA devices.

        See below for examples.

        .. note::
            This method modifies the module in-place.

        Args:
            device (:class:`torch.device`): the desired device of the parameters
                and buffers in this module
            dtype (:class:`torch.dtype`): the desired floating point or complex dtype of
                the parameters and buffers in this module
            tensor (torch.Tensor): Tensor whose dtype and device are the desired
                dtype and device for all parameters and buffers in this module
            memory_format (:class:`torch.memory_format`): the desired memory
                format for 4D parameters and buffers in this module (keyword
                only argument)

        Returns:
            Module: self

        Examples::

            >>> # xdoctest: +IGNORE_WANT("non-deterministic")
            >>> linear = nn.Linear(2, 2)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1913, -0.3420],
                    [-0.5113, -0.2325]])
            >>> linear.to(torch.double)
            Linear(in_features=2, out_features=2, bias=True)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1913, -0.3420],
                    [-0.5113, -0.2325]], dtype=torch.float64)
            >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
            >>> gpu1 = torch.device("cuda:1")
            >>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
            Linear(in_features=2, out_features=2, bias=True)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1914, -0.3420],
                    [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
            >>> cpu = torch.device("cpu")
            >>> linear.to(cpu)
            Linear(in_features=2, out_features=2, bias=True)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1914, -0.3420],
                    [-0.5112, -0.2324]], dtype=torch.float16)

            >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.3741+0.j,  0.2382+0.j],
                    [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
            >>> linear(torch.ones(3, 2, dtype=torch.cdouble))
            tensor([[0.6122+0.j, 0.1150+0.j],
                    [0.6122+0.j, 0.1150+0.j],
                    [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)

        """
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
            *args, **kwargs
        )

        if dtype is not None:
            if not (dtype.is_floating_point or dtype.is_complex):
                raise TypeError(
                    "nn.Module.to only accepts floating point or complex "
                    f"dtypes, but got desired dtype={dtype}"
                )
            if dtype.is_complex:
                warnings.warn(
                    "Complex modules are a new feature under active development whose design may change, "
                    "and some modules might not work as expected when using complex tensors as parameters or buffers. "
                    "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
                    "if a complex module does not work as expected."
                )

        def convert(t):
            try:
                if convert_to_format is not None and t.dim() in (4, 5):
                    return t.to(
                        device,
                        dtype if t.is_floating_point() or t.is_complex() else None,
                        non_blocking,
                        memory_format=convert_to_format,
                    )
                return t.to(
                    device,
                    dtype if t.is_floating_point() or t.is_complex() else None,
                    non_blocking,
                )
            except NotImplementedError as e:
                if str(e) == "Cannot copy out of meta tensor; no data!":
                    raise NotImplementedError(
                        f"{e} Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() "
                        f"when moving module from meta to a different device."
                    ) from None
                else:
                    raise

        return self._apply(convert)

to_empty

def to_empty(
    self: ~T,
    *,
    device: Union[int, str, torch.device, NoneType],
    recurse: bool = True
) -> ~T

Move the parameters and buffers to the specified device without copying storage.

Parameters:

Name Type Description Default
device ( None class:torch.device): The desired device of the parameters
and buffers in this module.
None
recurse bool Whether parameters and buffers of submodules should
be recursively moved to the specified device.
None

Returns:

Type Description
Module self
View Source
    def to_empty(
        self: T, *, device: Optional[DeviceLikeType], recurse: bool = True
    ) -> T:
        r"""Move the parameters and buffers to the specified device without copying storage.

        Args:
            device (:class:`torch.device`): The desired device of the parameters
                and buffers in this module.
            recurse (bool): Whether parameters and buffers of submodules should
                be recursively moved to the specified device.

        Returns:
            Module: self
        """
        return self._apply(
            lambda t: torch.empty_like(t, device=device), recurse=recurse
        )

train

def train(
    self: ~T,
    mode: bool = True
) -> ~T

Set the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout, :class:BatchNorm, etc.

Parameters:

Name Type Description Default
mode bool whether to set training mode (True) or evaluation
mode (False). Default: True.
None

Returns:

Type Description
Module self
View Source
    def train(self: T, mode: bool = True) -> T:
        r"""Set the module in training mode.

        This has any effect only on certain modules. See documentations of
        particular modules for details of their behaviors in training/evaluation
        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
        etc.

        Args:
            mode (bool): whether to set training mode (``True``) or evaluation
                         mode (``False``). Default: ``True``.

        Returns:
            Module: self
        """
        if not isinstance(mode, bool):
            raise ValueError("training mode is expected to be boolean")
        self.training = mode
        for module in self.children():
            module.train(mode)
        return self

type

def type(
    self: ~T,
    dst_type: Union[torch.dtype, str]
) -> ~T

Casts all parameters and buffers to :attr:dst_type.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
dst_type type or string the desired type None

Returns:

Type Description
Module self
View Source
    def type(self: T, dst_type: Union[dtype, str]) -> T:
        r"""Casts all parameters and buffers to :attr:`dst_type`.

        .. note::
            This method modifies the module in-place.

        Args:
            dst_type (type or string): the desired type

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.type(dst_type))

xpu

def xpu(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the XPU.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on XPU while being optimized.

        .. note::
            This method modifies the module in-place.

        Arguments:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.xpu(device))

zero_grad

def zero_grad(
    self,
    set_to_none: bool = True
) -> None

Reset gradients of all model parameters.

See similar function under :class:torch.optim.Optimizer for more context.

Parameters:

Name Type Description Default
set_to_none bool instead of setting to zero, set the grads to None.
See :meth:torch.optim.Optimizer.zero_grad for details.
None
View Source
    def zero_grad(self, set_to_none: bool = True) -> None:
        r"""Reset gradients of all model parameters.

        See similar function under :class:`torch.optim.Optimizer` for more context.

        Args:
            set_to_none (bool): instead of setting to zero, set the grads to None.
                See :meth:`torch.optim.Optimizer.zero_grad` for details.
        """
        if getattr(self, "_is_replica", False):
            warnings.warn(
                "Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
                "The parameters are copied (in a differentiable manner) from the original module. "
                "This means they are not leaf nodes in autograd and so don't accumulate gradients. "
                "If you need gradients in your forward method, consider using autograd.grad instead."
            )

        for p in self.parameters():
            if p.grad is not None:
                if set_to_none:
                    p.grad = None
                else:
                    if p.grad.grad_fn is not None:
                        p.grad.detach_()
                    else:
                        p.grad.requires_grad_(False)
                    p.grad.zero_()

Model

class Model(
    *args,
    **kwargs
)

Base model class for all types of model models.

View Source
class Model(PolymorphicModel):
    """
    Base model class for all types of model models.
    """

    id: UUIDField = UUIDField(primary_key=True, editable=False, default=uuid4)
    """Unique identifier for the model."""
    owner: ForeignKey = ForeignKey(User, on_delete=CASCADE)
    """User who owns the model."""
    round: IntegerField = IntegerField()
    """Round number of the model."""
    weights: BinaryField = BinaryField()
    """Weights of the model."""

    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the model weights to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.weights)

    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the model weights from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.weights = from_torch_module(value)

    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the model.

        Returns:
            models.Training: The training associated with the model.
        """
        return models.Training.objects.filter(model=self).first()

Ancestors (in MRO)

  • polymorphic.models.PolymorphicModel
  • django.db.models.base.Model

Descendants

  • fl_server_core.models.model.GlobalModel
  • fl_server_core.models.model.LocalModel

Class variables

DoesNotExist
Meta
MultipleObjectsReturned
globalmodel
localmodel
metric_set
objects
owner
owner_id
polymorphic_ctype
polymorphic_ctype_id
polymorphic_internal_model_fields
polymorphic_model_marker
polymorphic_primary_key_name
polymorphic_query_multiline_output
polymorphic_super_sub_accessors_replaced
training

Static methods

check

def check(
    **kwargs
)
View Source
    @classmethod
    def check(cls, **kwargs):
        errors = [
            *cls._check_swappable(),
            *cls._check_model(),
            *cls._check_managers(**kwargs),
        ]
        if not cls._meta.swapped:
            databases = kwargs.get("databases") or []
            errors += [
                *cls._check_fields(**kwargs),
                *cls._check_m2m_through_same_relationship(),
                *cls._check_long_column_names(databases),
            ]
            clash_errors = (
                *cls._check_id_field(),
                *cls._check_field_name_clashes(),
                *cls._check_model_name_db_lookup_clashes(),
                *cls._check_property_name_related_field_accessor_clashes(),
                *cls._check_single_primary_key(),
            )
            errors.extend(clash_errors)
            # If there are field name clashes, hide consequent column name
            # clashes.
            if not clash_errors:
                errors.extend(cls._check_column_name_clashes())
            errors += [
                *cls._check_index_together(),
                *cls._check_unique_together(),
                *cls._check_indexes(databases),
                *cls._check_ordering(),
                *cls._check_constraints(databases),
                *cls._check_default_pk(),
            ]

        return errors

from_db

def from_db(
    db,
    field_names,
    values
)
View Source
    @classmethod
    def from_db(cls, db, field_names, values):
        if len(values) != len(cls._meta.concrete_fields):
            values_iter = iter(values)
            values = [
                next(values_iter) if f.attname in field_names else DEFERRED
                for f in cls._meta.concrete_fields
            ]
        new = cls(*values)
        new._state.adding = False
        new._state.db = db
        return new

translate_polymorphic_Q_object

def translate_polymorphic_Q_object(
    q
)
View Source
    @classmethod
    def translate_polymorphic_Q_object(cls, q):
        return translate_polymorphic_Q_object(cls, q)

Instance variables

pk

Methods

clean

def clean(
    self
)

Hook for doing any extra model-wide validation after clean() has been

called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.

View Source
    def clean(self):
        """
        Hook for doing any extra model-wide validation after clean() has been
        called on every field by self.clean_fields. Any ValidationError raised
        by this method will not be associated with a particular field; it will
        have a special-case association with the field defined by NON_FIELD_ERRORS.
        """
        pass

clean_fields

def clean_fields(
    self,
    exclude=None
)

Clean all fields and raise a ValidationError containing a dict

of all validation errors if any occur.

View Source
    def clean_fields(self, exclude=None):
        """
        Clean all fields and raise a ValidationError containing a dict
        of all validation errors if any occur.
        """
        if exclude is None:
            exclude = []

        errors = {}
        for f in self._meta.fields:
            if f.name in exclude:
                continue
            # Skip validation for empty fields with blank=True. The developer
            # is responsible for making sure they have a valid value.
            raw_value = getattr(self, f.attname)
            if f.blank and raw_value in f.empty_values:
                continue
            try:
                setattr(self, f.attname, f.clean(raw_value, self))
            except ValidationError as e:
                errors[f.name] = e.error_list

        if errors:
            raise ValidationError(errors)

date_error_message

def date_error_message(
    self,
    lookup_type,
    field_name,
    unique_for
)
View Source
    def date_error_message(self, lookup_type, field_name, unique_for):
        opts = self._meta
        field = opts.get_field(field_name)
        return ValidationError(
            message=field.error_messages["unique_for_date"],
            code="unique_for_date",
            params={
                "model": self,
                "model_name": capfirst(opts.verbose_name),
                "lookup_type": lookup_type,
                "field": field_name,
                "field_label": capfirst(field.verbose_name),
                "date_field": unique_for,
                "date_field_label": capfirst(opts.get_field(unique_for).verbose_name),
            },
        )

delete

def delete(
    self,
    using=None,
    keep_parents=False
)
View Source
    def delete(self, using=None, keep_parents=False):
        if self.pk is None:
            raise ValueError(
                "%s object can't be deleted because its %s attribute is set "
                "to None." % (self._meta.object_name, self._meta.pk.attname)
            )
        using = using or router.db_for_write(self.__class__, instance=self)
        collector = Collector(using=using)
        collector.collect([self], keep_parents=keep_parents)
        return collector.delete()

full_clean

def full_clean(
    self,
    exclude=None,
    validate_unique=True
)

Call clean_fields(), clean(), and validate_unique() on the model.

Raise a ValidationError for any errors that occur.

View Source
    def full_clean(self, exclude=None, validate_unique=True):
        """
        Call clean_fields(), clean(), and validate_unique() on the model.
        Raise a ValidationError for any errors that occur.
        """
        errors = {}
        if exclude is None:
            exclude = []
        else:
            exclude = list(exclude)

        try:
            self.clean_fields(exclude=exclude)
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Form.clean() is run even if other validation fails, so do the
        # same with Model.clean() for consistency.
        try:
            self.clean()
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Run unique checks, but only for fields that passed validation.
        if validate_unique:
            for name in errors:
                if name != NON_FIELD_ERRORS and name not in exclude:
                    exclude.append(name)
            try:
                self.validate_unique(exclude=exclude)
            except ValidationError as e:
                errors = e.update_error_dict(errors)

        if errors:
            raise ValidationError(errors)

get_deferred_fields

def get_deferred_fields(
    self
)

Return a set containing names of deferred fields for this instance.

View Source
    def get_deferred_fields(self):
        """
        Return a set containing names of deferred fields for this instance.
        """
        return {
            f.attname
            for f in self._meta.concrete_fields
            if f.attname not in self.__dict__
        }

get_real_concrete_instance_class

def get_real_concrete_instance_class(
    self
)
View Source
    def get_real_concrete_instance_class(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .model_class()
        )

get_real_concrete_instance_class_id

def get_real_concrete_instance_class_id(
    self
)
View Source
    def get_real_concrete_instance_class_id(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .pk
        )

get_real_instance

def get_real_instance(
    self
)

Upcast an object to it's actual type.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the complete object with it's real class/type and all fields may be retrieved with this method.

.. note:: Each method call executes one db query (if necessary). Use the :meth:~polymorphic.managers.PolymorphicQuerySet.get_real_instances to upcast a complete list in a single efficient query.

View Source
    def get_real_instance(self):
        """
        Upcast an object to it's actual type.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the complete object with it's real class/type
        and all fields may be retrieved with this method.

        .. note::
            Each method call executes one db query (if necessary).
            Use the :meth:`~polymorphic.managers.PolymorphicQuerySet.get_real_instances`
            to upcast a complete list in a single efficient query.
        """
        real_model = self.get_real_instance_class()
        if real_model == self.__class__:
            return self
        return real_model.objects.db_manager(self._state.db).get(pk=self.pk)

get_real_instance_class

def get_real_instance_class(
    self
)

Return the actual model type of the object.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the real class/type of these objects may be determined using this method.

View Source
    def get_real_instance_class(self):
        """
        Return the actual model type of the object.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the real class/type of these objects may be
        determined using this method.
        """
        if self.polymorphic_ctype_id is None:
            raise PolymorphicTypeUndefined(
                (
                    "The model {}#{} does not have a `polymorphic_ctype_id` value defined.\n"
                    "If you created models outside polymorphic, e.g. through an import or migration, "
                    "make sure the `polymorphic_ctype_id` field points to the ContentType ID of the model subclass."
                ).format(self.__class__.__name__, self.pk)
            )

        # the following line would be the easiest way to do this, but it produces sql queries
        # return self.polymorphic_ctype.model_class()
        # so we use the following version, which uses the ContentType manager cache.
        # Note that model_class() can return None for stale content types;
        # when the content type record still exists but no longer refers to an existing model.
        model = (
            ContentType.objects.db_manager(self._state.db)
            .get_for_id(self.polymorphic_ctype_id)
            .model_class()
        )

        # Protect against bad imports (dumpdata without --natural) or other
        # issues missing with the ContentType models.
        if (
            model is not None
            and not issubclass(model, self.__class__)
            and (
                self.__class__._meta.proxy_for_model is None
                or not issubclass(model, self.__class__._meta.proxy_for_model)
            )
        ):
            raise PolymorphicTypeInvalid(
                "ContentType {} for {} #{} does not point to a subclass!".format(
                    self.polymorphic_ctype_id, model, self.pk
                )
            )

        return model

get_torch_model

def get_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the model weights to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the model weights to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.weights)

get_training

def get_training(
    self
) -> Optional[ForwardRef('models.Training')]

Gets the training associated with the model.

Returns:

Type Description
models.Training The training associated with the model.
View Source
    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the model.

        Returns:
            models.Training: The training associated with the model.
        """
        return models.Training.objects.filter(model=self).first()

id

def id(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

is_global_model

def is_global_model(
    self
)

Checks if the model is a global model.

Returns:

Type Description
bool True if the model is a global model, False otherwise.
View Source
    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

is_local_model

def is_local_model(
    self
)

Checks if the model is a local model.

Returns:

Type Description
bool True if the model is a local model, False otherwise.
View Source
    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

pre_save_polymorphic

def pre_save_polymorphic(
    self,
    using='default'
)

Make sure the polymorphic_ctype value is correctly set on this model.

View Source
    def pre_save_polymorphic(self, using=DEFAULT_DB_ALIAS):
        """
        Make sure the ``polymorphic_ctype`` value is correctly set on this model.
        """
        # This function may be called manually in special use-cases. When the object
        # is saved for the first time, we store its real class in polymorphic_ctype.
        # When the object later is retrieved by PolymorphicQuerySet, it uses this
        # field to figure out the real class of this object
        # (used by PolymorphicQuerySet._get_real_instances)
        if not self.polymorphic_ctype_id:
            self.polymorphic_ctype = ContentType.objects.db_manager(using).get_for_model(
                self, for_concrete_model=False
            )

prepare_database_save

def prepare_database_save(
    self,
    field
)
View Source
    def prepare_database_save(self, field):
        if self.pk is None:
            raise ValueError(
                "Unsaved model instance %r cannot be used in an ORM query." % self
            )
        return getattr(self, field.remote_field.get_related_field().attname)

refresh_from_db

def refresh_from_db(
    self,
    using=None,
    fields=None
)

Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn't loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

View Source
    def refresh_from_db(self, using=None, fields=None):
        """
        Reload field values from the database.

        By default, the reloading happens from the database this instance was
        loaded from, or by the read router if this instance wasn't loaded from
        any database. The using parameter will override the default.

        Fields can be used to specify which fields to reload. The fields
        should be an iterable of field attnames. If fields is None, then
        all non-deferred fields are reloaded.

        When accessing deferred fields of an instance, the deferred loading
        of the field will call this method.
        """
        if fields is None:
            self._prefetched_objects_cache = {}
        else:
            prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
            for field in fields:
                if field in prefetched_objects_cache:
                    del prefetched_objects_cache[field]
                    fields.remove(field)
            if not fields:
                return
            if any(LOOKUP_SEP in f for f in fields):
                raise ValueError(
                    'Found "%s" in fields argument. Relations and transforms '
                    "are not allowed in fields." % LOOKUP_SEP
                )

        hints = {"instance": self}
        db_instance_qs = self.__class__._base_manager.db_manager(
            using, hints=hints
        ).filter(pk=self.pk)

        # Use provided fields, if not set then reload all non-deferred fields.
        deferred_fields = self.get_deferred_fields()
        if fields is not None:
            fields = list(fields)
            db_instance_qs = db_instance_qs.only(*fields)
        elif deferred_fields:
            fields = [
                f.attname
                for f in self._meta.concrete_fields
                if f.attname not in deferred_fields
            ]
            db_instance_qs = db_instance_qs.only(*fields)

        db_instance = db_instance_qs.get()
        non_loaded_fields = db_instance.get_deferred_fields()
        for field in self._meta.concrete_fields:
            if field.attname in non_loaded_fields:
                # This field wasn't refreshed - skip ahead.
                continue
            setattr(self, field.attname, getattr(db_instance, field.attname))
            # Clear cached foreign keys.
            if field.is_relation and field.is_cached(self):
                field.delete_cached_value(self)

        # Clear cached relations.
        for field in self._meta.related_objects:
            if field.is_cached(self):
                field.delete_cached_value(self)

        self._state.db = db_instance._state.db

round

def round(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

save

def save(
    self,
    *args,
    **kwargs
)

Calls :meth:pre_save_polymorphic and saves the model.

View Source
    def save(self, *args, **kwargs):
        """Calls :meth:`pre_save_polymorphic` and saves the model."""
        using = kwargs.get("using", self._state.db or DEFAULT_DB_ALIAS)
        self.pre_save_polymorphic(using=using)
        return super().save(*args, **kwargs)

save_base

def save_base(
    self,
    raw=False,
    force_insert=False,
    force_update=False,
    using=None,
    update_fields=None
)

Handle the parts of saving which should be done only once per save,

yet need to be done in raw saves, too. This includes some sanity checks and signal sending.

The 'raw' argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.

View Source
    def save_base(
        self,
        raw=False,
        force_insert=False,
        force_update=False,
        using=None,
        update_fields=None,
    ):
        """
        Handle the parts of saving which should be done only once per save,
        yet need to be done in raw saves, too. This includes some sanity
        checks and signal sending.

        The 'raw' argument is telling save_base not to save any parent
        models and not to do any changes to the values before save. This
        is used by fixture loading.
        """
        using = using or router.db_for_write(self.__class__, instance=self)
        assert not (force_insert and (force_update or update_fields))
        assert update_fields is None or update_fields
        cls = origin = self.__class__
        # Skip proxies, but keep the origin as the proxy model.
        if cls._meta.proxy:
            cls = cls._meta.concrete_model
        meta = cls._meta
        if not meta.auto_created:
            pre_save.send(
                sender=origin,
                instance=self,
                raw=raw,
                using=using,
                update_fields=update_fields,
            )
        # A transaction isn't needed if one query is issued.
        if meta.parents:
            context_manager = transaction.atomic(using=using, savepoint=False)
        else:
            context_manager = transaction.mark_for_rollback_on_error(using=using)
        with context_manager:
            parent_inserted = False
            if not raw:
                parent_inserted = self._save_parents(cls, using, update_fields)
            updated = self._save_table(
                raw,
                cls,
                force_insert or parent_inserted,
                force_update,
                using,
                update_fields,
            )
        # Store the database on which the object was saved
        self._state.db = using
        # Once saved, this is no longer a to-be-added instance.
        self._state.adding = False

        # Signal that the save is complete
        if not meta.auto_created:
            post_save.send(
                sender=origin,
                instance=self,
                created=(not updated),
                update_fields=update_fields,
                raw=raw,
                using=using,
            )

serializable_value

def serializable_value(
    self,
    field_name
)

Return the value of the field name for this instance. If the field is

a foreign key, return the id value instead of the object. If there's no Field object with this name on the model, return the model attribute's value.

Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.

View Source
    def serializable_value(self, field_name):
        """
        Return the value of the field name for this instance. If the field is
        a foreign key, return the id value instead of the object. If there's
        no Field object with this name on the model, return the model
        attribute's value.

        Used to serialize a field's value (in the serializer, or form output,
        for example). Normally, you would just access the attribute directly
        and not use this method.
        """
        try:
            field = self._meta.get_field(field_name)
        except FieldDoesNotExist:
            return getattr(self, field_name)
        return getattr(self, field.attname)

set_torch_model

def set_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the model weights from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the model weights from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.weights = from_torch_module(value)

unique_error_message

def unique_error_message(
    self,
    model_class,
    unique_check
)
View Source
    def unique_error_message(self, model_class, unique_check):
        opts = model_class._meta

        params = {
            "model": self,
            "model_class": model_class,
            "model_name": capfirst(opts.verbose_name),
            "unique_check": unique_check,
        }

        # A unique field
        if len(unique_check) == 1:
            field = opts.get_field(unique_check[0])
            params["field_label"] = capfirst(field.verbose_name)
            return ValidationError(
                message=field.error_messages["unique"],
                code="unique",
                params=params,
            )

        # unique_together
        else:
            field_labels = [
                capfirst(opts.get_field(f).verbose_name) for f in unique_check
            ]
            params["field_labels"] = get_text_list(field_labels, _("and"))
            return ValidationError(
                message=_("%(model_name)s with this %(field_labels)s already exists."),
                code="unique_together",
                params=params,
            )

validate_unique

def validate_unique(
    self,
    exclude=None
)

Check unique constraints on the model and raise ValidationError if any

failed.

View Source
    def validate_unique(self, exclude=None):
        """
        Check unique constraints on the model and raise ValidationError if any
        failed.
        """
        unique_checks, date_checks = self._get_unique_checks(exclude=exclude)

        errors = self._perform_unique_checks(unique_checks)
        date_errors = self._perform_date_checks(date_checks)

        for k, v in date_errors.items():
            errors.setdefault(k, []).extend(v)

        if errors:
            raise ValidationError(errors)

weights

def weights(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

SWAGModel

class SWAGModel(
    *args,
    **kwargs
)

Model class for SWAG models.

View Source
class SWAGModel(GlobalModel):
    """
    Model class for SWAG models.
    """

    swag_first_moment: BinaryField = BinaryField()
    """First moment of the SWAG model."""
    swag_second_moment: BinaryField = BinaryField()
    """Second moment of the SWAG model."""

    @property
    def first_moment(self) -> Tensor:
        """
        Gets the first moment of the SWAG model.

        Returns:
            Tensor: The first moment of the SWAG model.
        """
        return to_torch_tensor(self.swag_first_moment)

    @first_moment.setter
    def first_moment(self, value: Tensor):
        """
        Sets the first moment of the SWAG model.

        Args:
            value (Tensor): The first moment of the SWAG model.
        """
        self.swag_first_moment = from_torch_tensor(value)

    @property
    def second_moment(self) -> Tensor:
        """
        Gets the second moment of the SWAG model.

        Returns:
            Tensor: The second moment of the SWAG model.
        """
        return to_torch_tensor(self.swag_second_moment)

    @second_moment.setter
    def second_moment(self, value: Tensor):
        """
        Sets the second moment of the SWAG model.

        Args:
            value (Tensor): The second moment of the SWAG model.
        """
        self.swag_second_moment = from_torch_tensor(value)

Ancestors (in MRO)

  • fl_server_core.models.model.GlobalModel
  • fl_server_core.models.model.Model
  • polymorphic.models.PolymorphicModel
  • django.db.models.base.Model

Class variables

DoesNotExist
Meta
MultipleObjectsReturned
globalmodel
globalmodel_ptr
globalmodel_ptr_id
localmodel
localmodel_set
mean_models
meanmodel
metric_set
model_ptr
model_ptr_id
objects
owner
owner_id
polymorphic_ctype
polymorphic_ctype_id
polymorphic_internal_model_fields
polymorphic_model_marker
polymorphic_primary_key_name
polymorphic_query_multiline_output
polymorphic_super_sub_accessors_replaced
swagmodel
training

Static methods

check

def check(
    **kwargs
)
View Source
    @classmethod
    def check(cls, **kwargs):
        errors = [
            *cls._check_swappable(),
            *cls._check_model(),
            *cls._check_managers(**kwargs),
        ]
        if not cls._meta.swapped:
            databases = kwargs.get("databases") or []
            errors += [
                *cls._check_fields(**kwargs),
                *cls._check_m2m_through_same_relationship(),
                *cls._check_long_column_names(databases),
            ]
            clash_errors = (
                *cls._check_id_field(),
                *cls._check_field_name_clashes(),
                *cls._check_model_name_db_lookup_clashes(),
                *cls._check_property_name_related_field_accessor_clashes(),
                *cls._check_single_primary_key(),
            )
            errors.extend(clash_errors)
            # If there are field name clashes, hide consequent column name
            # clashes.
            if not clash_errors:
                errors.extend(cls._check_column_name_clashes())
            errors += [
                *cls._check_index_together(),
                *cls._check_unique_together(),
                *cls._check_indexes(databases),
                *cls._check_ordering(),
                *cls._check_constraints(databases),
                *cls._check_default_pk(),
            ]

        return errors

from_db

def from_db(
    db,
    field_names,
    values
)
View Source
    @classmethod
    def from_db(cls, db, field_names, values):
        if len(values) != len(cls._meta.concrete_fields):
            values_iter = iter(values)
            values = [
                next(values_iter) if f.attname in field_names else DEFERRED
                for f in cls._meta.concrete_fields
            ]
        new = cls(*values)
        new._state.adding = False
        new._state.db = db
        return new

translate_polymorphic_Q_object

def translate_polymorphic_Q_object(
    q
)
View Source
    @classmethod
    def translate_polymorphic_Q_object(cls, q):
        return translate_polymorphic_Q_object(cls, q)

Instance variables

first_moment

Gets the first moment of the SWAG model.

pk
second_moment

Gets the second moment of the SWAG model.

Methods

clean

def clean(
    self
)

Hook for doing any extra model-wide validation after clean() has been

called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.

View Source
    def clean(self):
        """
        Hook for doing any extra model-wide validation after clean() has been
        called on every field by self.clean_fields. Any ValidationError raised
        by this method will not be associated with a particular field; it will
        have a special-case association with the field defined by NON_FIELD_ERRORS.
        """
        pass

clean_fields

def clean_fields(
    self,
    exclude=None
)

Clean all fields and raise a ValidationError containing a dict

of all validation errors if any occur.

View Source
    def clean_fields(self, exclude=None):
        """
        Clean all fields and raise a ValidationError containing a dict
        of all validation errors if any occur.
        """
        if exclude is None:
            exclude = []

        errors = {}
        for f in self._meta.fields:
            if f.name in exclude:
                continue
            # Skip validation for empty fields with blank=True. The developer
            # is responsible for making sure they have a valid value.
            raw_value = getattr(self, f.attname)
            if f.blank and raw_value in f.empty_values:
                continue
            try:
                setattr(self, f.attname, f.clean(raw_value, self))
            except ValidationError as e:
                errors[f.name] = e.error_list

        if errors:
            raise ValidationError(errors)

date_error_message

def date_error_message(
    self,
    lookup_type,
    field_name,
    unique_for
)
View Source
    def date_error_message(self, lookup_type, field_name, unique_for):
        opts = self._meta
        field = opts.get_field(field_name)
        return ValidationError(
            message=field.error_messages["unique_for_date"],
            code="unique_for_date",
            params={
                "model": self,
                "model_name": capfirst(opts.verbose_name),
                "lookup_type": lookup_type,
                "field": field_name,
                "field_label": capfirst(field.verbose_name),
                "date_field": unique_for,
                "date_field_label": capfirst(opts.get_field(unique_for).verbose_name),
            },
        )

delete

def delete(
    self,
    using=None,
    keep_parents=False
)
View Source
    def delete(self, using=None, keep_parents=False):
        if self.pk is None:
            raise ValueError(
                "%s object can't be deleted because its %s attribute is set "
                "to None." % (self._meta.object_name, self._meta.pk.attname)
            )
        using = using or router.db_for_write(self.__class__, instance=self)
        collector = Collector(using=using)
        collector.collect([self], keep_parents=keep_parents)
        return collector.delete()

description

def description(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

full_clean

def full_clean(
    self,
    exclude=None,
    validate_unique=True
)

Call clean_fields(), clean(), and validate_unique() on the model.

Raise a ValidationError for any errors that occur.

View Source
    def full_clean(self, exclude=None, validate_unique=True):
        """
        Call clean_fields(), clean(), and validate_unique() on the model.
        Raise a ValidationError for any errors that occur.
        """
        errors = {}
        if exclude is None:
            exclude = []
        else:
            exclude = list(exclude)

        try:
            self.clean_fields(exclude=exclude)
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Form.clean() is run even if other validation fails, so do the
        # same with Model.clean() for consistency.
        try:
            self.clean()
        except ValidationError as e:
            errors = e.update_error_dict(errors)

        # Run unique checks, but only for fields that passed validation.
        if validate_unique:
            for name in errors:
                if name != NON_FIELD_ERRORS and name not in exclude:
                    exclude.append(name)
            try:
                self.validate_unique(exclude=exclude)
            except ValidationError as e:
                errors = e.update_error_dict(errors)

        if errors:
            raise ValidationError(errors)

get_deferred_fields

def get_deferred_fields(
    self
)

Return a set containing names of deferred fields for this instance.

View Source
    def get_deferred_fields(self):
        """
        Return a set containing names of deferred fields for this instance.
        """
        return {
            f.attname
            for f in self._meta.concrete_fields
            if f.attname not in self.__dict__
        }

get_preprocessing_torch_model

def get_preprocessing_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the preprocessing to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_preprocessing_torch_model(self) -> torch.nn.Module:
        """
        Converts the preprocessing to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.preprocessing)

get_real_concrete_instance_class

def get_real_concrete_instance_class(
    self
)
View Source
    def get_real_concrete_instance_class(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .model_class()
        )

get_real_concrete_instance_class_id

def get_real_concrete_instance_class_id(
    self
)
View Source
    def get_real_concrete_instance_class_id(self):
        model_class = self.get_real_instance_class()
        if model_class is None:
            return None
        return (
            ContentType.objects.db_manager(self._state.db)
            .get_for_model(model_class, for_concrete_model=True)
            .pk
        )

get_real_instance

def get_real_instance(
    self
)

Upcast an object to it's actual type.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the complete object with it's real class/type and all fields may be retrieved with this method.

.. note:: Each method call executes one db query (if necessary). Use the :meth:~polymorphic.managers.PolymorphicQuerySet.get_real_instances to upcast a complete list in a single efficient query.

View Source
    def get_real_instance(self):
        """
        Upcast an object to it's actual type.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the complete object with it's real class/type
        and all fields may be retrieved with this method.

        .. note::
            Each method call executes one db query (if necessary).
            Use the :meth:`~polymorphic.managers.PolymorphicQuerySet.get_real_instances`
            to upcast a complete list in a single efficient query.
        """
        real_model = self.get_real_instance_class()
        if real_model == self.__class__:
            return self
        return real_model.objects.db_manager(self._state.db).get(pk=self.pk)

get_real_instance_class

def get_real_instance_class(
    self
)

Return the actual model type of the object.

If a non-polymorphic manager (like base_objects) has been used to retrieve objects, then the real class/type of these objects may be determined using this method.

View Source
    def get_real_instance_class(self):
        """
        Return the actual model type of the object.

        If a non-polymorphic manager (like base_objects) has been used to
        retrieve objects, then the real class/type of these objects may be
        determined using this method.
        """
        if self.polymorphic_ctype_id is None:
            raise PolymorphicTypeUndefined(
                (
                    "The model {}#{} does not have a `polymorphic_ctype_id` value defined.\n"
                    "If you created models outside polymorphic, e.g. through an import or migration, "
                    "make sure the `polymorphic_ctype_id` field points to the ContentType ID of the model subclass."
                ).format(self.__class__.__name__, self.pk)
            )

        # the following line would be the easiest way to do this, but it produces sql queries
        # return self.polymorphic_ctype.model_class()
        # so we use the following version, which uses the ContentType manager cache.
        # Note that model_class() can return None for stale content types;
        # when the content type record still exists but no longer refers to an existing model.
        model = (
            ContentType.objects.db_manager(self._state.db)
            .get_for_id(self.polymorphic_ctype_id)
            .model_class()
        )

        # Protect against bad imports (dumpdata without --natural) or other
        # issues missing with the ContentType models.
        if (
            model is not None
            and not issubclass(model, self.__class__)
            and (
                self.__class__._meta.proxy_for_model is None
                or not issubclass(model, self.__class__._meta.proxy_for_model)
            )
        ):
            raise PolymorphicTypeInvalid(
                "ContentType {} for {} #{} does not point to a subclass!".format(
                    self.polymorphic_ctype_id, model, self.pk
                )
            )

        return model

get_torch_model

def get_torch_model(
    self
) -> torch.nn.modules.module.Module

Converts the model weights to a PyTorch model.

Returns:

Type Description
torch.nn.Module The PyTorch model.
View Source
    def get_torch_model(self) -> torch.nn.Module:
        """
        Converts the model weights to a PyTorch model.

        Returns:
            torch.nn.Module: The PyTorch model.
        """
        return to_torch_module(self.weights)

get_training

def get_training(
    self
) -> Optional[ForwardRef('models.Training')]

Gets the training associated with the model.

Returns:

Type Description
models.Training The training associated with the model.
View Source
    def get_training(self) -> Optional["models.Training"]:
        """
        Gets the training associated with the model.

        Returns:
            models.Training: The training associated with the model.
        """
        return models.Training.objects.filter(model=self).first()

id

def id(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

input_shape

def input_shape(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

is_global_model

def is_global_model(
    self
)

Checks if the model is a global model.

Returns:

Type Description
bool True if the model is a global model, False otherwise.
View Source
    def is_global_model(self):
        """
        Checks if the model is a global model.

        Returns:
            bool: True if the model is a global model, False otherwise.
        """
        return isinstance(self, GlobalModel)

is_local_model

def is_local_model(
    self
)

Checks if the model is a local model.

Returns:

Type Description
bool True if the model is a local model, False otherwise.
View Source
    def is_local_model(self):
        """
        Checks if the model is a local model.

        Returns:
            bool: True if the model is a local model, False otherwise.
        """
        return isinstance(self, LocalModel)

name

def name(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

pre_save_polymorphic

def pre_save_polymorphic(
    self,
    using='default'
)

Make sure the polymorphic_ctype value is correctly set on this model.

View Source
    def pre_save_polymorphic(self, using=DEFAULT_DB_ALIAS):
        """
        Make sure the ``polymorphic_ctype`` value is correctly set on this model.
        """
        # This function may be called manually in special use-cases. When the object
        # is saved for the first time, we store its real class in polymorphic_ctype.
        # When the object later is retrieved by PolymorphicQuerySet, it uses this
        # field to figure out the real class of this object
        # (used by PolymorphicQuerySet._get_real_instances)
        if not self.polymorphic_ctype_id:
            self.polymorphic_ctype = ContentType.objects.db_manager(using).get_for_model(
                self, for_concrete_model=False
            )

prepare_database_save

def prepare_database_save(
    self,
    field
)
View Source
    def prepare_database_save(self, field):
        if self.pk is None:
            raise ValueError(
                "Unsaved model instance %r cannot be used in an ORM query." % self
            )
        return getattr(self, field.remote_field.get_related_field().attname)

preprocessing

def preprocessing(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

refresh_from_db

def refresh_from_db(
    self,
    using=None,
    fields=None
)

Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn't loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

View Source
    def refresh_from_db(self, using=None, fields=None):
        """
        Reload field values from the database.

        By default, the reloading happens from the database this instance was
        loaded from, or by the read router if this instance wasn't loaded from
        any database. The using parameter will override the default.

        Fields can be used to specify which fields to reload. The fields
        should be an iterable of field attnames. If fields is None, then
        all non-deferred fields are reloaded.

        When accessing deferred fields of an instance, the deferred loading
        of the field will call this method.
        """
        if fields is None:
            self._prefetched_objects_cache = {}
        else:
            prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
            for field in fields:
                if field in prefetched_objects_cache:
                    del prefetched_objects_cache[field]
                    fields.remove(field)
            if not fields:
                return
            if any(LOOKUP_SEP in f for f in fields):
                raise ValueError(
                    'Found "%s" in fields argument. Relations and transforms '
                    "are not allowed in fields." % LOOKUP_SEP
                )

        hints = {"instance": self}
        db_instance_qs = self.__class__._base_manager.db_manager(
            using, hints=hints
        ).filter(pk=self.pk)

        # Use provided fields, if not set then reload all non-deferred fields.
        deferred_fields = self.get_deferred_fields()
        if fields is not None:
            fields = list(fields)
            db_instance_qs = db_instance_qs.only(*fields)
        elif deferred_fields:
            fields = [
                f.attname
                for f in self._meta.concrete_fields
                if f.attname not in deferred_fields
            ]
            db_instance_qs = db_instance_qs.only(*fields)

        db_instance = db_instance_qs.get()
        non_loaded_fields = db_instance.get_deferred_fields()
        for field in self._meta.concrete_fields:
            if field.attname in non_loaded_fields:
                # This field wasn't refreshed - skip ahead.
                continue
            setattr(self, field.attname, getattr(db_instance, field.attname))
            # Clear cached foreign keys.
            if field.is_relation and field.is_cached(self):
                field.delete_cached_value(self)

        # Clear cached relations.
        for field in self._meta.related_objects:
            if field.is_cached(self):
                field.delete_cached_value(self)

        self._state.db = db_instance._state.db

round

def round(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

save

def save(
    self,
    *args,
    **kwargs
)

Calls :meth:pre_save_polymorphic and saves the model.

View Source
    def save(self, *args, **kwargs):
        """Calls :meth:`pre_save_polymorphic` and saves the model."""
        using = kwargs.get("using", self._state.db or DEFAULT_DB_ALIAS)
        self.pre_save_polymorphic(using=using)
        return super().save(*args, **kwargs)

save_base

def save_base(
    self,
    raw=False,
    force_insert=False,
    force_update=False,
    using=None,
    update_fields=None
)

Handle the parts of saving which should be done only once per save,

yet need to be done in raw saves, too. This includes some sanity checks and signal sending.

The 'raw' argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.

View Source
    def save_base(
        self,
        raw=False,
        force_insert=False,
        force_update=False,
        using=None,
        update_fields=None,
    ):
        """
        Handle the parts of saving which should be done only once per save,
        yet need to be done in raw saves, too. This includes some sanity
        checks and signal sending.

        The 'raw' argument is telling save_base not to save any parent
        models and not to do any changes to the values before save. This
        is used by fixture loading.
        """
        using = using or router.db_for_write(self.__class__, instance=self)
        assert not (force_insert and (force_update or update_fields))
        assert update_fields is None or update_fields
        cls = origin = self.__class__
        # Skip proxies, but keep the origin as the proxy model.
        if cls._meta.proxy:
            cls = cls._meta.concrete_model
        meta = cls._meta
        if not meta.auto_created:
            pre_save.send(
                sender=origin,
                instance=self,
                raw=raw,
                using=using,
                update_fields=update_fields,
            )
        # A transaction isn't needed if one query is issued.
        if meta.parents:
            context_manager = transaction.atomic(using=using, savepoint=False)
        else:
            context_manager = transaction.mark_for_rollback_on_error(using=using)
        with context_manager:
            parent_inserted = False
            if not raw:
                parent_inserted = self._save_parents(cls, using, update_fields)
            updated = self._save_table(
                raw,
                cls,
                force_insert or parent_inserted,
                force_update,
                using,
                update_fields,
            )
        # Store the database on which the object was saved
        self._state.db = using
        # Once saved, this is no longer a to-be-added instance.
        self._state.adding = False

        # Signal that the save is complete
        if not meta.auto_created:
            post_save.send(
                sender=origin,
                instance=self,
                created=(not updated),
                update_fields=update_fields,
                raw=raw,
                using=using,
            )

serializable_value

def serializable_value(
    self,
    field_name
)

Return the value of the field name for this instance. If the field is

a foreign key, return the id value instead of the object. If there's no Field object with this name on the model, return the model attribute's value.

Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.

View Source
    def serializable_value(self, field_name):
        """
        Return the value of the field name for this instance. If the field is
        a foreign key, return the id value instead of the object. If there's
        no Field object with this name on the model, return the model
        attribute's value.

        Used to serialize a field's value (in the serializer, or form output,
        for example). Normally, you would just access the attribute directly
        and not use this method.
        """
        try:
            field = self._meta.get_field(field_name)
        except FieldDoesNotExist:
            return getattr(self, field_name)
        return getattr(self, field.attname)

set_preprocessing_torch_model

def set_preprocessing_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the preprocessing from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_preprocessing_torch_model(self, value: torch.nn.Module):
        """
        Sets the preprocessing from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.preprocessing = from_torch_module(value)

set_torch_model

def set_torch_model(
    self,
    value: torch.nn.modules.module.Module
)

Sets the model weights from a PyTorch model.

Parameters:

Name Type Description Default
value torch.nn.Module The PyTorch model. None
View Source
    def set_torch_model(self, value: torch.nn.Module):
        """
        Sets the model weights from a PyTorch model.

        Args:
            value (torch.nn.Module): The PyTorch model.
        """
        self.weights = from_torch_module(value)

swag_first_moment

def swag_first_moment(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

swag_second_moment

def swag_second_moment(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.

unique_error_message

def unique_error_message(
    self,
    model_class,
    unique_check
)
View Source
    def unique_error_message(self, model_class, unique_check):
        opts = model_class._meta

        params = {
            "model": self,
            "model_class": model_class,
            "model_name": capfirst(opts.verbose_name),
            "unique_check": unique_check,
        }

        # A unique field
        if len(unique_check) == 1:
            field = opts.get_field(unique_check[0])
            params["field_label"] = capfirst(field.verbose_name)
            return ValidationError(
                message=field.error_messages["unique"],
                code="unique",
                params=params,
            )

        # unique_together
        else:
            field_labels = [
                capfirst(opts.get_field(f).verbose_name) for f in unique_check
            ]
            params["field_labels"] = get_text_list(field_labels, _("and"))
            return ValidationError(
                message=_("%(model_name)s with this %(field_labels)s already exists."),
                code="unique_together",
                params=params,
            )

validate_unique

def validate_unique(
    self,
    exclude=None
)

Check unique constraints on the model and raise ValidationError if any

failed.

View Source
    def validate_unique(self, exclude=None):
        """
        Check unique constraints on the model and raise ValidationError if any
        failed.
        """
        unique_checks, date_checks = self._get_unique_checks(exclude=exclude)

        errors = self._perform_unique_checks(unique_checks)
        date_errors = self._perform_date_checks(date_checks)

        for k, v in date_errors.items():
            errors.setdefault(k, []).extend(v)

        if errors:
            raise ValidationError(errors)

weights

def weights(
    ...
)

A wrapper for a deferred-loading field. When the value is read from this

object the first time, the query is executed.