Skip to content

Module fl_server_api.tests.test_inference

View Source
# SPDX-FileCopyrightText: 2024 Benedikt Franke <benedikt.franke@dlr.de>
# SPDX-FileCopyrightText: 2024 Florian Heinrich <florian.heinrich@dlr.de>
#
# SPDX-License-Identifier: Apache-2.0

import base64
from django.core.files.uploadedfile import SimpleUploadedFile
from django.test import TestCase
import json
import io
import pickle
import torch
import torch.nn
from torchvision.transforms.functional import to_pil_image
from uuid import uuid4

from fl_server_core.tests import BASE_URL, Dummy
from fl_server_core.utils.torch_serialization import from_torch_module, from_torch_tensor


class mxb(torch.nn.Module):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return 2*x + 5


class InferenceTests(TestCase):

    def setUp(self):
        self.user = Dummy.create_user_and_authenticate(self.client)

    def test_inference_success(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        training = Dummy.create_training(actor=self.user)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

    def test_inference_json(self):
        inp = torch.zeros(3, 3).tolist()
        training = Dummy.create_training(actor=self.user)
        response = self.client.post(
            f"{BASE_URL}/inference/",
            json.dumps({"model_id": str(training.model.id), "model_input": inp}),
            content_type="application/json"
        )
        self.assertEqual(response.status_code, 200)
        response_json = response.json()
        self.assertEqual({}, response_json["uncertainty"])
        inference = response_json["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

    def test_inference_json_binary_output(self):
        inp = torch.zeros(3, 3).tolist()
        training = Dummy.create_training(actor=self.user)
        response = self.client.post(
            f"{BASE_URL}/inference/",
            json.dumps({"model_id": str(training.model.id), "model_input": inp, "return_format": "binary"}),
            content_type="application/json"
        )
        self.assertEqual(response.status_code, 200)
        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

    def test_inference_with_unknown_content_type(self):
        with self.assertLogs("root", level="INFO") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": "not important", "model_input": "not important"},
                "application/octet-stream"
            )
        self.assertEqual(cm.output, [
            "ERROR:fl.server:Unknown Content-Type 'application/octet-stream'",
            "WARNING:django.request:Unsupported Media Type: /api/inference/",
        ])
        self.assertEqual(response.status_code, 415)

    def test_model_not_exist(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        Dummy.create_model()
        unused_id = uuid4()
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="WARNING") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": unused_id, "model_input": input_file},
                # 'multipart/form-data; boundary=...' is set automatically (default)
            )
        self.assertEqual(cm.output, [
            "WARNING:django.request:Bad Request: /api/inference/",
        ])
        self.assertEqual(response.status_code, 400)
        response_json = response.json()
        self.assertIsNotNone(response_json)
        self.assertEqual(f"Model {unused_id} not found.", response_json["detail"])

    def test_model_weights_corrupted(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_broken_model()
        Dummy.create_training(model=model, actor=self.user)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="ERROR"):
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": model.id, "model_input": input_file},
            )
        self.assertEqual(response.status_code, 500)
        response_json = response.json()
        self.assertIsNotNone(response_json)
        self.assertEqual("Error loading torch object", response_json["detail"])

    def test_inference_result_torchscript_model(self):
        torch_model = torch.jit.script(mxb())  # torchscript model
        self._inference_result(torch_model)

    def test_inference_result_normal_model(self):
        torch_model = mxb()  # normal model
        self._inference_result(torch_model)

    def _inference_result(self, torch_model: torch.nn.Module):
        model = Dummy.create_model(owner=self.user, weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        inputs = torch.as_tensor([
            [0.9102, 1.0899, 2.0304, -0.8448],
            [2.2616, -0.2974, 0.3805, -0.9301],
            [0.4804, 0.2510,  0.2702, -0.1529],
        ])
        input_file = SimpleUploadedFile(
            "input.pt",
            from_torch_tensor(inputs),
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([2, 0, 0]) == inference_tensor))

    def test_inference_input_shape_positive(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_model(input_shape=[None, 3])
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

    def test_inference_input_shape_negative(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_model(input_shape=[None, 5])
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="WARNING") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": str(training.model.id), "model_input": input_file}
            )
        self.assertEqual(cm.output, [
            "WARNING:django.request:Bad Request: /api/inference/",
        ])
        self.assertEqual(response.status_code, 400)
        self.assertEqual(response.json()[0], "Input shape does not match model input shape.")

    def test_inference_input_pil_image(self):
        img = to_pil_image(torch.zeros(1, 5, 5))
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format="jpeg")
        img_byte_arr = img_byte_arr.getvalue()

        torch.manual_seed(42)
        torch_model = torch.jit.script(torch.nn.Sequential(
            torch.nn.Conv2d(1, 2, 3),
            torch.nn.Flatten(),
            torch.nn.Linear(3*3, 2)
        ))
        model = Dummy.create_model(input_shape=[None, 5, 5], weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            img_byte_arr,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([0, 0]) == inference_tensor))

    def test_inference_input_pil_image_base64(self):
        img = to_pil_image(torch.zeros(1, 5, 5))
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format="jpeg")
        img_byte_arr = img_byte_arr.getvalue()
        inp = base64.b64encode(img_byte_arr)

        torch.manual_seed(42)
        torch_model = torch.jit.script(torch.nn.Sequential(
            torch.nn.Conv2d(1, 2, 3),
            torch.nn.Flatten(),
            torch.nn.Linear(3*3, 2)
        ))
        model = Dummy.create_model(input_shape=[None, 5, 5], weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([0, 0]) == inference_tensor))

Variables

BASE_URL

Classes

InferenceTests

class InferenceTests(
    methodName='runTest'
)

Similar to TransactionTestCase, but use transaction.atomic() to achieve

test isolation.

In most situations, TestCase should be preferred to TransactionTestCase as it allows faster execution. However, there are some situations where using TransactionTestCase might be necessary (e.g. testing some transactional behavior).

On database backends with no transaction support, TestCase behaves as TransactionTestCase.

View Source
class InferenceTests(TestCase):

    def setUp(self):
        self.user = Dummy.create_user_and_authenticate(self.client)

    def test_inference_success(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        training = Dummy.create_training(actor=self.user)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

    def test_inference_json(self):
        inp = torch.zeros(3, 3).tolist()
        training = Dummy.create_training(actor=self.user)
        response = self.client.post(
            f"{BASE_URL}/inference/",
            json.dumps({"model_id": str(training.model.id), "model_input": inp}),
            content_type="application/json"
        )
        self.assertEqual(response.status_code, 200)
        response_json = response.json()
        self.assertEqual({}, response_json["uncertainty"])
        inference = response_json["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

    def test_inference_json_binary_output(self):
        inp = torch.zeros(3, 3).tolist()
        training = Dummy.create_training(actor=self.user)
        response = self.client.post(
            f"{BASE_URL}/inference/",
            json.dumps({"model_id": str(training.model.id), "model_input": inp, "return_format": "binary"}),
            content_type="application/json"
        )
        self.assertEqual(response.status_code, 200)
        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

    def test_inference_with_unknown_content_type(self):
        with self.assertLogs("root", level="INFO") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": "not important", "model_input": "not important"},
                "application/octet-stream"
            )
        self.assertEqual(cm.output, [
            "ERROR:fl.server:Unknown Content-Type 'application/octet-stream'",
            "WARNING:django.request:Unsupported Media Type: /api/inference/",
        ])
        self.assertEqual(response.status_code, 415)

    def test_model_not_exist(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        Dummy.create_model()
        unused_id = uuid4()
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="WARNING") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": unused_id, "model_input": input_file},
                # 'multipart/form-data; boundary=...' is set automatically (default)
            )
        self.assertEqual(cm.output, [
            "WARNING:django.request:Bad Request: /api/inference/",
        ])
        self.assertEqual(response.status_code, 400)
        response_json = response.json()
        self.assertIsNotNone(response_json)
        self.assertEqual(f"Model {unused_id} not found.", response_json["detail"])

    def test_model_weights_corrupted(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_broken_model()
        Dummy.create_training(model=model, actor=self.user)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="ERROR"):
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": model.id, "model_input": input_file},
            )
        self.assertEqual(response.status_code, 500)
        response_json = response.json()
        self.assertIsNotNone(response_json)
        self.assertEqual("Error loading torch object", response_json["detail"])

    def test_inference_result_torchscript_model(self):
        torch_model = torch.jit.script(mxb())  # torchscript model
        self._inference_result(torch_model)

    def test_inference_result_normal_model(self):
        torch_model = mxb()  # normal model
        self._inference_result(torch_model)

    def _inference_result(self, torch_model: torch.nn.Module):
        model = Dummy.create_model(owner=self.user, weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        inputs = torch.as_tensor([
            [0.9102, 1.0899, 2.0304, -0.8448],
            [2.2616, -0.2974, 0.3805, -0.9301],
            [0.4804, 0.2510,  0.2702, -0.1529],
        ])
        input_file = SimpleUploadedFile(
            "input.pt",
            from_torch_tensor(inputs),
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([2, 0, 0]) == inference_tensor))

    def test_inference_input_shape_positive(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_model(input_shape=[None, 3])
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

    def test_inference_input_shape_negative(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_model(input_shape=[None, 5])
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="WARNING") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": str(training.model.id), "model_input": input_file}
            )
        self.assertEqual(cm.output, [
            "WARNING:django.request:Bad Request: /api/inference/",
        ])
        self.assertEqual(response.status_code, 400)
        self.assertEqual(response.json()[0], "Input shape does not match model input shape.")

    def test_inference_input_pil_image(self):
        img = to_pil_image(torch.zeros(1, 5, 5))
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format="jpeg")
        img_byte_arr = img_byte_arr.getvalue()

        torch.manual_seed(42)
        torch_model = torch.jit.script(torch.nn.Sequential(
            torch.nn.Conv2d(1, 2, 3),
            torch.nn.Flatten(),
            torch.nn.Linear(3*3, 2)
        ))
        model = Dummy.create_model(input_shape=[None, 5, 5], weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            img_byte_arr,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([0, 0]) == inference_tensor))

    def test_inference_input_pil_image_base64(self):
        img = to_pil_image(torch.zeros(1, 5, 5))
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format="jpeg")
        img_byte_arr = img_byte_arr.getvalue()
        inp = base64.b64encode(img_byte_arr)

        torch.manual_seed(42)
        torch_model = torch.jit.script(torch.nn.Sequential(
            torch.nn.Conv2d(1, 2, 3),
            torch.nn.Flatten(),
            torch.nn.Linear(3*3, 2)
        ))
        model = Dummy.create_model(input_shape=[None, 5, 5], weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([0, 0]) == inference_tensor))

Ancestors (in MRO)

  • django.test.testcases.TestCase
  • django.test.testcases.TransactionTestCase
  • django.test.testcases.SimpleTestCase
  • unittest.case.TestCase

Class variables

async_client_class
available_apps
client_class
databases
failureException
fixtures
longMessage
maxDiff
reset_sequences
serialized_rollback

Static methods

addClassCleanup

def addClassCleanup(
    function,
    /,
    *args,
    **kwargs
)

Same as addCleanup, except the cleanup items are called even if

setUpClass fails (unlike tearDownClass).

View Source
    @classmethod
    def addClassCleanup(cls, function, /, *args, **kwargs):
        """Same as addCleanup, except the cleanup items are called even if
        setUpClass fails (unlike tearDownClass)."""
        cls._class_cleanups.append((function, args, kwargs))

captureOnCommitCallbacks

def captureOnCommitCallbacks(
    *,
    using='default',
    execute=False
)

Context manager to capture transaction.on_commit() callbacks.

View Source
    @classmethod
    @contextmanager
    def captureOnCommitCallbacks(cls, *, using=DEFAULT_DB_ALIAS, execute=False):
        """Context manager to capture transaction.on_commit() callbacks."""
        callbacks = []
        start_count = len(connections[using].run_on_commit)
        try:
            yield callbacks
        finally:
            while True:
                callback_count = len(connections[using].run_on_commit)
                for _, callback in connections[using].run_on_commit[start_count:]:
                    callbacks.append(callback)
                    if execute:
                        callback()

                if callback_count == len(connections[using].run_on_commit):
                    break
                start_count = callback_count

doClassCleanups

def doClassCleanups()

Execute all class cleanup functions. Normally called for you after

tearDownClass.

View Source
    @classmethod
    def doClassCleanups(cls):
        """Execute all class cleanup functions. Normally called for you after
        tearDownClass."""
        cls.tearDown_exceptions = []
        while cls._class_cleanups:
            function, args, kwargs = cls._class_cleanups.pop()
            try:
                function(*args, **kwargs)
            except Exception:
                cls.tearDown_exceptions.append(sys.exc_info())

setUpClass

def setUpClass()

Hook method for setting up class fixture before running tests in the class.

View Source
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        if not cls._databases_support_transactions():
            return
        # Disable the durability check to allow testing durable atomic blocks
        # in a transaction for performance reasons.
        transaction.Atomic._ensure_durability = False
        try:
            cls.cls_atomics = cls._enter_atomics()

            if cls.fixtures:
                for db_name in cls._databases_names(include_mirrors=False):
                    try:
                        call_command(
                            "loaddata",
                            *cls.fixtures,
                            **{"verbosity": 0, "database": db_name},
                        )
                    except Exception:
                        cls._rollback_atomics(cls.cls_atomics)
                        raise
            pre_attrs = cls.__dict__.copy()
            try:
                cls.setUpTestData()
            except Exception:
                cls._rollback_atomics(cls.cls_atomics)
                raise
            for name, value in cls.__dict__.items():
                if value is not pre_attrs.get(name):
                    setattr(cls, name, TestData(name, value))
        except Exception:
            transaction.Atomic._ensure_durability = True
            raise

setUpTestData

def setUpTestData()

Load initial data for the TestCase.

View Source
    @classmethod
    def setUpTestData(cls):
        """Load initial data for the TestCase."""
        pass

tearDownClass

def tearDownClass()

Hook method for deconstructing the class fixture after running all tests in the class.

View Source
    @classmethod
    def tearDownClass(cls):
        transaction.Atomic._ensure_durability = True
        if cls._databases_support_transactions():
            cls._rollback_atomics(cls.cls_atomics)
            for conn in connections.all():
                conn.close()
        super().tearDownClass()

Methods

addCleanup

def addCleanup(
    self,
    function,
    /,
    *args,
    **kwargs
)

Add a function, with arguments, to be called when the test is

completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

View Source
    def addCleanup(self, function, /, *args, **kwargs):
        """Add a function, with arguments, to be called when the test is
        completed. Functions added are called on a LIFO basis and are
        called after tearDown on test failure or success.

        Cleanup items are called even if setUp fails (unlike tearDown)."""
        self._cleanups.append((function, args, kwargs))

addTypeEqualityFunc

def addTypeEqualityFunc(
    self,
    typeobj,
    function
)

Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.

Parameters:

Name Type Description Default
typeobj None The data type to call this function on when both values
are of the same type in assertEqual().
None
function None The callable taking two arguments and an optional
msg= argument that raises self.failureException with a
useful error message when the two arguments are not equal.
None
View Source
    def addTypeEqualityFunc(self, typeobj, function):
        """Add a type specific assertEqual style function to compare a type.

        This method is for use by TestCase subclasses that need to register
        their own type equality functions to provide nicer error messages.

        Args:
            typeobj: The data type to call this function on when both values
                    are of the same type in assertEqual().
            function: The callable taking two arguments and an optional
                    msg= argument that raises self.failureException with a
                    useful error message when the two arguments are not equal.
        """
        self._type_equality_funcs[typeobj] = function

assertAlmostEqual

def assertAlmostEqual(
    self,
    first,
    second,
    places=None,
    msg=None,
    delta=None
)

Fail if the two objects are unequal as determined by their

difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is more than the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

If the two objects compare equal then they will automatically compare almost equal.

View Source
    def assertAlmostEqual(self, first, second, places=None, msg=None,
                          delta=None):
        """Fail if the two objects are unequal as determined by their
           difference rounded to the given number of decimal places
           (default 7) and comparing to zero, or by comparing that the
           difference between the two objects is more than the given
           delta.

           Note that decimal places (from zero) are usually not the same
           as significant digits (measured from the most significant digit).

           If the two objects compare equal then they will automatically
           compare almost equal.
        """
        if first == second:
            # shortcut
            return
        if delta is not None and places is not None:
            raise TypeError("specify delta or places not both")

        diff = abs(first - second)
        if delta is not None:
            if diff <= delta:
                return

            standardMsg = '%s != %s within %s delta (%s difference)' % (
                safe_repr(first),
                safe_repr(second),
                safe_repr(delta),
                safe_repr(diff))
        else:
            if places is None:
                places = 7

            if round(diff, places) == 0:
                return

            standardMsg = '%s != %s within %r places (%s difference)' % (
                safe_repr(first),
                safe_repr(second),
                places,
                safe_repr(diff))
        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

assertAlmostEquals

def assertAlmostEquals(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertContains

def assertContains(
    self,
    response,
    text,
    count=None,
    status_code=200,
    msg_prefix='',
    html=False
)

Assert that a response indicates that some content was retrieved

successfully, (i.e., the HTTP status code was as expected) and that text occurs count times in the content of the response. If count is None, the count doesn't matter - the assertion is true if the text occurs at least once in the response.

View Source
    def assertContains(
        self, response, text, count=None, status_code=200, msg_prefix="", html=False
    ):
        """
        Assert that a response indicates that some content was retrieved
        successfully, (i.e., the HTTP status code was as expected) and that
        ``text`` occurs ``count`` times in the content of the response.
        If ``count`` is None, the count doesn't matter - the assertion is true
        if the text occurs at least once in the response.
        """
        text_repr, real_count, msg_prefix = self._assert_contains(
            response, text, status_code, msg_prefix, html
        )

        if count is not None:
            self.assertEqual(
                real_count,
                count,
                msg_prefix
                + "Found %d instances of %s in response (expected %d)"
                % (real_count, text_repr, count),
            )
        else:
            self.assertTrue(
                real_count != 0, msg_prefix + "Couldn't find %s in response" % text_repr
            )

assertCountEqual

def assertCountEqual(
    self,
    first,
    second,
    msg=None
)

Asserts that two iterables have the same elements, the same number of

times, without regard to order.

self.assertEqual(Counter(list(first)),
                 Counter(list(second)))

Example: - [0, 1, 1] and [1, 0, 1] compare equal. - [0, 0, 1] and [0, 1] compare unequal.

View Source
    def assertCountEqual(self, first, second, msg=None):
        """Asserts that two iterables have the same elements, the same number of
        times, without regard to order.

            self.assertEqual(Counter(list(first)),
                             Counter(list(second)))

         Example:
            - [0, 1, 1] and [1, 0, 1] compare equal.
            - [0, 0, 1] and [0, 1] compare unequal.

        """
        first_seq, second_seq = list(first), list(second)
        try:
            first = collections.Counter(first_seq)
            second = collections.Counter(second_seq)
        except TypeError:
            # Handle case with unhashable elements
            differences = _count_diff_all_purpose(first_seq, second_seq)
        else:
            if first == second:
                return
            differences = _count_diff_hashable(first_seq, second_seq)

        if differences:
            standardMsg = 'Element counts were not equal:\n'
            lines = ['First has %d, Second has %d:  %r' % diff for diff in differences]
            diffMsg = '\n'.join(lines)
            standardMsg = self._truncateMessage(standardMsg, diffMsg)
            msg = self._formatMessage(msg, standardMsg)
            self.fail(msg)

assertDictContainsSubset

def assertDictContainsSubset(
    self,
    subset,
    dictionary,
    msg=None
)

Checks whether dictionary is a superset of subset.

View Source
    def assertDictContainsSubset(self, subset, dictionary, msg=None):
        """Checks whether dictionary is a superset of subset."""
        warnings.warn('assertDictContainsSubset is deprecated',
                      DeprecationWarning,
                      stacklevel=2)
        missing = []
        mismatched = []
        for key, value in subset.items():
            if key not in dictionary:
                missing.append(key)
            elif value != dictionary[key]:
                mismatched.append('%s, expected: %s, actual: %s' %
                                  (safe_repr(key), safe_repr(value),
                                   safe_repr(dictionary[key])))

        if not (missing or mismatched):
            return

        standardMsg = ''
        if missing:
            standardMsg = 'Missing: %s' % ','.join(safe_repr(m) for m in
                                                    missing)
        if mismatched:
            if standardMsg:
                standardMsg += '; '
            standardMsg += 'Mismatched values: %s' % ','.join(mismatched)

        self.fail(self._formatMessage(msg, standardMsg))

assertDictEqual

def assertDictEqual(
    self,
    d1,
    d2,
    msg=None
)
View Source
    def assertDictEqual(self, d1, d2, msg=None):
        self.assertIsInstance(d1, dict, 'First argument is not a dictionary')
        self.assertIsInstance(d2, dict, 'Second argument is not a dictionary')

        if d1 != d2:
            standardMsg = '%s != %s' % _common_shorten_repr(d1, d2)
            diff = ('\n' + '\n'.join(difflib.ndiff(
                           pprint.pformat(d1).splitlines(),
                           pprint.pformat(d2).splitlines())))
            standardMsg = self._truncateMessage(standardMsg, diff)
            self.fail(self._formatMessage(msg, standardMsg))

assertEqual

def assertEqual(
    self,
    first,
    second,
    msg=None
)

Fail if the two objects are unequal as determined by the '=='

operator.

View Source
    def assertEqual(self, first, second, msg=None):
        """Fail if the two objects are unequal as determined by the '=='
           operator.
        """
        assertion_func = self._getAssertEqualityFunc(first, second)
        assertion_func(first, second, msg=msg)

assertEquals

def assertEquals(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertFalse

def assertFalse(
    self,
    expr,
    msg=None
)

Check that the expression is false.

View Source
    def assertFalse(self, expr, msg=None):
        """Check that the expression is false."""
        if expr:
            msg = self._formatMessage(msg, "%s is not false" % safe_repr(expr))
            raise self.failureException(msg)

assertFieldOutput

def assertFieldOutput(
    self,
    fieldclass,
    valid,
    invalid,
    field_args=None,
    field_kwargs=None,
    empty_value=''
)

Assert that a form field behaves correctly with various inputs.

Parameters:

Name Type Description Default
fieldclass None the class of the field to be tested. None
valid None a dictionary mapping valid inputs to their expected
cleaned values.
None
invalid None a dictionary mapping invalid inputs to one or more
raised error messages.
None
field_args None the args passed to instantiate the field None
field_kwargs None the kwargs passed to instantiate the field None
empty_value None the expected clean output for inputs in empty_values None
View Source
    def assertFieldOutput(
        self,
        fieldclass,
        valid,
        invalid,
        field_args=None,
        field_kwargs=None,
        empty_value="",
    ):
        """
        Assert that a form field behaves correctly with various inputs.

        Args:
            fieldclass: the class of the field to be tested.
            valid: a dictionary mapping valid inputs to their expected
                    cleaned values.
            invalid: a dictionary mapping invalid inputs to one or more
                    raised error messages.
            field_args: the args passed to instantiate the field
            field_kwargs: the kwargs passed to instantiate the field
            empty_value: the expected clean output for inputs in empty_values
        """
        if field_args is None:
            field_args = []
        if field_kwargs is None:
            field_kwargs = {}
        required = fieldclass(*field_args, **field_kwargs)
        optional = fieldclass(*field_args, **{**field_kwargs, "required": False})
        # test valid inputs
        for input, output in valid.items():
            self.assertEqual(required.clean(input), output)
            self.assertEqual(optional.clean(input), output)
        # test invalid inputs
        for input, errors in invalid.items():
            with self.assertRaises(ValidationError) as context_manager:
                required.clean(input)
            self.assertEqual(context_manager.exception.messages, errors)

            with self.assertRaises(ValidationError) as context_manager:
                optional.clean(input)
            self.assertEqual(context_manager.exception.messages, errors)
        # test required inputs
        error_required = [required.error_messages["required"]]
        for e in required.empty_values:
            with self.assertRaises(ValidationError) as context_manager:
                required.clean(e)
            self.assertEqual(context_manager.exception.messages, error_required)
            self.assertEqual(optional.clean(e), empty_value)
        # test that max_length and min_length are always accepted
        if issubclass(fieldclass, CharField):
            field_kwargs.update({"min_length": 2, "max_length": 20})
            self.assertIsInstance(fieldclass(*field_args, **field_kwargs), fieldclass)

assertFormError

def assertFormError(
    self,
    response,
    form,
    field,
    errors,
    msg_prefix=''
)

Assert that a form used to render the response has a specific field

error.

View Source
    def assertFormError(self, response, form, field, errors, msg_prefix=""):
        """
        Assert that a form used to render the response has a specific field
        error.
        """
        if msg_prefix:
            msg_prefix += ": "

        # Put context(s) into a list to simplify processing.
        contexts = to_list(response.context)
        if not contexts:
            self.fail(
                msg_prefix + "Response did not use any contexts to render the response"
            )

        # Put error(s) into a list to simplify processing.
        errors = to_list(errors)

        # Search all contexts for the error.
        found_form = False
        for i, context in enumerate(contexts):
            if form not in context:
                continue
            found_form = True
            for err in errors:
                if field:
                    if field in context[form].errors:
                        field_errors = context[form].errors[field]
                        self.assertTrue(
                            err in field_errors,
                            msg_prefix + "The field '%s' on form '%s' in"
                            " context %d does not contain the error '%s'"
                            " (actual errors: %s)"
                            % (field, form, i, err, repr(field_errors)),
                        )
                    elif field in context[form].fields:
                        self.fail(
                            msg_prefix
                            + (
                                "The field '%s' on form '%s' in context %d contains no "
                                "errors"
                            )
                            % (field, form, i)
                        )
                    else:
                        self.fail(
                            msg_prefix
                            + (
                                "The form '%s' in context %d does not contain the "
                                "field '%s'"
                            )
                            % (form, i, field)
                        )
                else:
                    non_field_errors = context[form].non_field_errors()
                    self.assertTrue(
                        err in non_field_errors,
                        msg_prefix + "The form '%s' in context %d does not"
                        " contain the non-field error '%s'"
                        " (actual errors: %s)"
                        % (form, i, err, non_field_errors or "none"),
                    )
        if not found_form:
            self.fail(
                msg_prefix + "The form '%s' was not used to render the response" % form
            )

assertFormsetError

def assertFormsetError(
    self,
    response,
    formset,
    form_index,
    field,
    errors,
    msg_prefix=''
)

Assert that a formset used to render the response has a specific error.

For field errors, specify the form_index and the field. For non-field errors, specify the form_index and the field as None. For non-form errors, specify form_index as None and the field as None.

View Source
    def assertFormsetError(
        self, response, formset, form_index, field, errors, msg_prefix=""
    ):
        """
        Assert that a formset used to render the response has a specific error.

        For field errors, specify the ``form_index`` and the ``field``.
        For non-field errors, specify the ``form_index`` and the ``field`` as
        None.
        For non-form errors, specify ``form_index`` as None and the ``field``
        as None.
        """
        # Add punctuation to msg_prefix
        if msg_prefix:
            msg_prefix += ": "

        # Put context(s) into a list to simplify processing.
        contexts = to_list(response.context)
        if not contexts:
            self.fail(
                msg_prefix + "Response did not use any contexts to "
                "render the response"
            )

        # Put error(s) into a list to simplify processing.
        errors = to_list(errors)

        # Search all contexts for the error.
        found_formset = False
        for i, context in enumerate(contexts):
            if formset not in context or not hasattr(context[formset], "forms"):
                continue
            found_formset = True
            for err in errors:
                if field is not None:
                    if field in context[formset].forms[form_index].errors:
                        field_errors = context[formset].forms[form_index].errors[field]
                        self.assertTrue(
                            err in field_errors,
                            msg_prefix + "The field '%s' on formset '%s', "
                            "form %d in context %d does not contain the "
                            "error '%s' (actual errors: %s)"
                            % (field, formset, form_index, i, err, repr(field_errors)),
                        )
                    elif field in context[formset].forms[form_index].fields:
                        self.fail(
                            msg_prefix
                            + (
                                "The field '%s' on formset '%s', form %d in context "
                                "%d contains no errors"
                            )
                            % (field, formset, form_index, i)
                        )
                    else:
                        self.fail(
                            msg_prefix
                            + (
                                "The formset '%s', form %d in context %d does not "
                                "contain the field '%s'"
                            )
                            % (formset, form_index, i, field)
                        )
                elif form_index is not None:
                    non_field_errors = (
                        context[formset].forms[form_index].non_field_errors()
                    )
                    self.assertFalse(
                        not non_field_errors,
                        msg_prefix + "The formset '%s', form %d in context %d "
                        "does not contain any non-field errors."
                        % (formset, form_index, i),
                    )
                    self.assertTrue(
                        err in non_field_errors,
                        msg_prefix + "The formset '%s', form %d in context %d "
                        "does not contain the non-field error '%s' (actual errors: %s)"
                        % (formset, form_index, i, err, repr(non_field_errors)),
                    )
                else:
                    non_form_errors = context[formset].non_form_errors()
                    self.assertFalse(
                        not non_form_errors,
                        msg_prefix + "The formset '%s' in context %d does not "
                        "contain any non-form errors." % (formset, i),
                    )
                    self.assertTrue(
                        err in non_form_errors,
                        msg_prefix + "The formset '%s' in context %d does not "
                        "contain the non-form error '%s' (actual errors: %s)"
                        % (formset, i, err, repr(non_form_errors)),
                    )
        if not found_formset:
            self.fail(
                msg_prefix
                + "The formset '%s' was not used to render the response" % formset
            )

assertGreater

def assertGreater(
    self,
    a,
    b,
    msg=None
)

Just like self.assertTrue(a > b), but with a nicer default message.

View Source
    def assertGreater(self, a, b, msg=None):
        """Just like self.assertTrue(a > b), but with a nicer default message."""
        if not a > b:
            standardMsg = '%s not greater than %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

assertGreaterEqual

def assertGreaterEqual(
    self,
    a,
    b,
    msg=None
)

Just like self.assertTrue(a >= b), but with a nicer default message.

View Source
    def assertGreaterEqual(self, a, b, msg=None):
        """Just like self.assertTrue(a >= b), but with a nicer default message."""
        if not a >= b:
            standardMsg = '%s not greater than or equal to %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

assertHTMLEqual

def assertHTMLEqual(
    self,
    html1,
    html2,
    msg=None
)

Assert that two HTML snippets are semantically the same.

Whitespace in most cases is ignored, and attribute ordering is not significant. The arguments must be valid HTML.

View Source
    def assertHTMLEqual(self, html1, html2, msg=None):
        """
        Assert that two HTML snippets are semantically the same.
        Whitespace in most cases is ignored, and attribute ordering is not
        significant. The arguments must be valid HTML.
        """
        dom1 = assert_and_parse_html(
            self, html1, msg, "First argument is not valid HTML:"
        )
        dom2 = assert_and_parse_html(
            self, html2, msg, "Second argument is not valid HTML:"
        )

        if dom1 != dom2:
            standardMsg = "%s != %s" % (safe_repr(dom1, True), safe_repr(dom2, True))
            diff = "\n" + "\n".join(
                difflib.ndiff(
                    str(dom1).splitlines(),
                    str(dom2).splitlines(),
                )
            )
            standardMsg = self._truncateMessage(standardMsg, diff)
            self.fail(self._formatMessage(msg, standardMsg))

assertHTMLNotEqual

def assertHTMLNotEqual(
    self,
    html1,
    html2,
    msg=None
)

Assert that two HTML snippets are not semantically equivalent.

View Source
    def assertHTMLNotEqual(self, html1, html2, msg=None):
        """Assert that two HTML snippets are not semantically equivalent."""
        dom1 = assert_and_parse_html(
            self, html1, msg, "First argument is not valid HTML:"
        )
        dom2 = assert_and_parse_html(
            self, html2, msg, "Second argument is not valid HTML:"
        )

        if dom1 == dom2:
            standardMsg = "%s == %s" % (safe_repr(dom1, True), safe_repr(dom2, True))
            self.fail(self._formatMessage(msg, standardMsg))

assertIn

def assertIn(
    self,
    member,
    container,
    msg=None
)

Just like self.assertTrue(a in b), but with a nicer default message.

View Source
    def assertIn(self, member, container, msg=None):
        """Just like self.assertTrue(a in b), but with a nicer default message."""
        if member not in container:
            standardMsg = '%s not found in %s' % (safe_repr(member),
                                                  safe_repr(container))
            self.fail(self._formatMessage(msg, standardMsg))

assertInHTML

def assertInHTML(
    self,
    needle,
    haystack,
    count=None,
    msg_prefix=''
)
View Source
    def assertInHTML(self, needle, haystack, count=None, msg_prefix=""):
        needle = assert_and_parse_html(
            self, needle, None, "First argument is not valid HTML:"
        )
        haystack = assert_and_parse_html(
            self, haystack, None, "Second argument is not valid HTML:"
        )
        real_count = haystack.count(needle)
        if count is not None:
            self.assertEqual(
                real_count,
                count,
                msg_prefix
                + "Found %d instances of '%s' in response (expected %d)"
                % (real_count, needle, count),
            )
        else:
            self.assertTrue(
                real_count != 0, msg_prefix + "Couldn't find '%s' in response" % needle
            )

assertIs

def assertIs(
    self,
    expr1,
    expr2,
    msg=None
)

Just like self.assertTrue(a is b), but with a nicer default message.

View Source
    def assertIs(self, expr1, expr2, msg=None):
        """Just like self.assertTrue(a is b), but with a nicer default message."""
        if expr1 is not expr2:
            standardMsg = '%s is not %s' % (safe_repr(expr1),
                                             safe_repr(expr2))
            self.fail(self._formatMessage(msg, standardMsg))

assertIsInstance

def assertIsInstance(
    self,
    obj,
    cls,
    msg=None
)

Same as self.assertTrue(isinstance(obj, cls)), with a nicer

default message.

View Source
    def assertIsInstance(self, obj, cls, msg=None):
        """Same as self.assertTrue(isinstance(obj, cls)), with a nicer
        default message."""
        if not isinstance(obj, cls):
            standardMsg = '%s is not an instance of %r' % (safe_repr(obj), cls)
            self.fail(self._formatMessage(msg, standardMsg))

assertIsNone

def assertIsNone(
    self,
    obj,
    msg=None
)

Same as self.assertTrue(obj is None), with a nicer default message.

View Source
    def assertIsNone(self, obj, msg=None):
        """Same as self.assertTrue(obj is None), with a nicer default message."""
        if obj is not None:
            standardMsg = '%s is not None' % (safe_repr(obj),)
            self.fail(self._formatMessage(msg, standardMsg))

assertIsNot

def assertIsNot(
    self,
    expr1,
    expr2,
    msg=None
)

Just like self.assertTrue(a is not b), but with a nicer default message.

View Source
    def assertIsNot(self, expr1, expr2, msg=None):
        """Just like self.assertTrue(a is not b), but with a nicer default message."""
        if expr1 is expr2:
            standardMsg = 'unexpectedly identical: %s' % (safe_repr(expr1),)
            self.fail(self._formatMessage(msg, standardMsg))

assertIsNotNone

def assertIsNotNone(
    self,
    obj,
    msg=None
)

Included for symmetry with assertIsNone.

View Source
    def assertIsNotNone(self, obj, msg=None):
        """Included for symmetry with assertIsNone."""
        if obj is None:
            standardMsg = 'unexpectedly None'
            self.fail(self._formatMessage(msg, standardMsg))

assertJSONEqual

def assertJSONEqual(
    self,
    raw,
    expected_data,
    msg=None
)

Assert that the JSON fragments raw and expected_data are equal.

Usual JSON non-significant whitespace rules apply as the heavyweight is delegated to the json library.

View Source
    def assertJSONEqual(self, raw, expected_data, msg=None):
        """
        Assert that the JSON fragments raw and expected_data are equal.
        Usual JSON non-significant whitespace rules apply as the heavyweight
        is delegated to the json library.
        """
        try:
            data = json.loads(raw)
        except json.JSONDecodeError:
            self.fail("First argument is not valid JSON: %r" % raw)
        if isinstance(expected_data, str):
            try:
                expected_data = json.loads(expected_data)
            except ValueError:
                self.fail("Second argument is not valid JSON: %r" % expected_data)
        self.assertEqual(data, expected_data, msg=msg)

assertJSONNotEqual

def assertJSONNotEqual(
    self,
    raw,
    expected_data,
    msg=None
)

Assert that the JSON fragments raw and expected_data are not equal.

Usual JSON non-significant whitespace rules apply as the heavyweight is delegated to the json library.

View Source
    def assertJSONNotEqual(self, raw, expected_data, msg=None):
        """
        Assert that the JSON fragments raw and expected_data are not equal.
        Usual JSON non-significant whitespace rules apply as the heavyweight
        is delegated to the json library.
        """
        try:
            data = json.loads(raw)
        except json.JSONDecodeError:
            self.fail("First argument is not valid JSON: %r" % raw)
        if isinstance(expected_data, str):
            try:
                expected_data = json.loads(expected_data)
            except json.JSONDecodeError:
                self.fail("Second argument is not valid JSON: %r" % expected_data)
        self.assertNotEqual(data, expected_data, msg=msg)

assertLess

def assertLess(
    self,
    a,
    b,
    msg=None
)

Just like self.assertTrue(a < b), but with a nicer default message.

View Source
    def assertLess(self, a, b, msg=None):
        """Just like self.assertTrue(a < b), but with a nicer default message."""
        if not a < b:
            standardMsg = '%s not less than %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

assertLessEqual

def assertLessEqual(
    self,
    a,
    b,
    msg=None
)

Just like self.assertTrue(a <= b), but with a nicer default message.

View Source
    def assertLessEqual(self, a, b, msg=None):
        """Just like self.assertTrue(a <= b), but with a nicer default message."""
        if not a <= b:
            standardMsg = '%s not less than or equal to %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

assertListEqual

def assertListEqual(
    self,
    list1,
    list2,
    msg=None
)

A list-specific equality assertion.

Parameters:

Name Type Description Default
list1 None The first list to compare. None
list2 None The second list to compare. None
msg None Optional message to use on failure instead of a list of
differences.
None
View Source
    def assertListEqual(self, list1, list2, msg=None):
        """A list-specific equality assertion.

        Args:
            list1: The first list to compare.
            list2: The second list to compare.
            msg: Optional message to use on failure instead of a list of
                    differences.

        """
        self.assertSequenceEqual(list1, list2, msg, seq_type=list)

assertLogs

def assertLogs(
    self,
    logger=None,
    level=None
)

Fail unless a log message of level level or higher is emitted

on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes: output and records. At the end of the context manager, the output attribute will be a list of the matching formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example::

with self.assertLogs('foo', level='INFO') as cm:
    logging.getLogger('foo').info('first message')
    logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message',
                             'ERROR:foo.bar:second message'])
View Source
    def assertLogs(self, logger=None, level=None):
        """Fail unless a log message of level *level* or higher is emitted
        on *logger_name* or its children.  If omitted, *level* defaults to
        INFO and *logger* defaults to the root logger.

        This method must be used as a context manager, and will yield
        a recording object with two attributes: `output` and `records`.
        At the end of the context manager, the `output` attribute will
        be a list of the matching formatted log messages and the
        `records` attribute will be a list of the corresponding LogRecord
        objects.

        Example::

            with self.assertLogs('foo', level='INFO') as cm:
                logging.getLogger('foo').info('first message')
                logging.getLogger('foo.bar').error('second message')
            self.assertEqual(cm.output, ['INFO:foo:first message',
                                         'ERROR:foo.bar:second message'])
        """
        # Lazy import to avoid importing logging if it is not needed.
        from ._log import _AssertLogsContext
        return _AssertLogsContext(self, logger, level, no_logs=False)

assertMultiLineEqual

def assertMultiLineEqual(
    self,
    first,
    second,
    msg=None
)

Assert that two multi-line strings are equal.

View Source
    def assertMultiLineEqual(self, first, second, msg=None):
        """Assert that two multi-line strings are equal."""
        self.assertIsInstance(first, str, 'First argument is not a string')
        self.assertIsInstance(second, str, 'Second argument is not a string')

        if first != second:
            # don't use difflib if the strings are too long
            if (len(first) > self._diffThreshold or
                len(second) > self._diffThreshold):
                self._baseAssertEqual(first, second, msg)
            firstlines = first.splitlines(keepends=True)
            secondlines = second.splitlines(keepends=True)
            if len(firstlines) == 1 and first.strip('\r\n') == first:
                firstlines = [first + '\n']
                secondlines = [second + '\n']
            standardMsg = '%s != %s' % _common_shorten_repr(first, second)
            diff = '\n' + ''.join(difflib.ndiff(firstlines, secondlines))
            standardMsg = self._truncateMessage(standardMsg, diff)
            self.fail(self._formatMessage(msg, standardMsg))

assertNoLogs

def assertNoLogs(
    self,
    logger=None,
    level=None
)

Fail unless no log messages of level level or higher are emitted

on logger_name or its children.

This method must be used as a context manager.

View Source
    def assertNoLogs(self, logger=None, level=None):
        """ Fail unless no log messages of level *level* or higher are emitted
        on *logger_name* or its children.

        This method must be used as a context manager.
        """
        from ._log import _AssertLogsContext
        return _AssertLogsContext(self, logger, level, no_logs=True)

assertNotAlmostEqual

def assertNotAlmostEqual(
    self,
    first,
    second,
    places=None,
    msg=None,
    delta=None
)

Fail if the two objects are equal as determined by their

difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the difference between the two objects is less than the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

Objects that are equal automatically fail.

View Source
    def assertNotAlmostEqual(self, first, second, places=None, msg=None,
                             delta=None):
        """Fail if the two objects are equal as determined by their
           difference rounded to the given number of decimal places
           (default 7) and comparing to zero, or by comparing that the
           difference between the two objects is less than the given delta.

           Note that decimal places (from zero) are usually not the same
           as significant digits (measured from the most significant digit).

           Objects that are equal automatically fail.
        """
        if delta is not None and places is not None:
            raise TypeError("specify delta or places not both")
        diff = abs(first - second)
        if delta is not None:
            if not (first == second) and diff > delta:
                return
            standardMsg = '%s == %s within %s delta (%s difference)' % (
                safe_repr(first),
                safe_repr(second),
                safe_repr(delta),
                safe_repr(diff))
        else:
            if places is None:
                places = 7
            if not (first == second) and round(diff, places) != 0:
                return
            standardMsg = '%s == %s within %r places' % (safe_repr(first),
                                                         safe_repr(second),
                                                         places)

        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

assertNotAlmostEquals

def assertNotAlmostEquals(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertNotContains

def assertNotContains(
    self,
    response,
    text,
    status_code=200,
    msg_prefix='',
    html=False
)

Assert that a response indicates that some content was retrieved

successfully, (i.e., the HTTP status code was as expected) and that text doesn't occur in the content of the response.

View Source
    def assertNotContains(
        self, response, text, status_code=200, msg_prefix="", html=False
    ):
        """
        Assert that a response indicates that some content was retrieved
        successfully, (i.e., the HTTP status code was as expected) and that
        ``text`` doesn't occur in the content of the response.
        """
        text_repr, real_count, msg_prefix = self._assert_contains(
            response, text, status_code, msg_prefix, html
        )

        self.assertEqual(
            real_count, 0, msg_prefix + "Response should not contain %s" % text_repr
        )

assertNotEqual

def assertNotEqual(
    self,
    first,
    second,
    msg=None
)

Fail if the two objects are equal as determined by the '!='

operator.

View Source
    def assertNotEqual(self, first, second, msg=None):
        """Fail if the two objects are equal as determined by the '!='
           operator.
        """
        if not first != second:
            msg = self._formatMessage(msg, '%s == %s' % (safe_repr(first),
                                                          safe_repr(second)))
            raise self.failureException(msg)

assertNotEquals

def assertNotEquals(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertNotIn

def assertNotIn(
    self,
    member,
    container,
    msg=None
)

Just like self.assertTrue(a not in b), but with a nicer default message.

View Source
    def assertNotIn(self, member, container, msg=None):
        """Just like self.assertTrue(a not in b), but with a nicer default message."""
        if member in container:
            standardMsg = '%s unexpectedly found in %s' % (safe_repr(member),
                                                        safe_repr(container))
            self.fail(self._formatMessage(msg, standardMsg))

assertNotIsInstance

def assertNotIsInstance(
    self,
    obj,
    cls,
    msg=None
)

Included for symmetry with assertIsInstance.

View Source
    def assertNotIsInstance(self, obj, cls, msg=None):
        """Included for symmetry with assertIsInstance."""
        if isinstance(obj, cls):
            standardMsg = '%s is an instance of %r' % (safe_repr(obj), cls)
            self.fail(self._formatMessage(msg, standardMsg))

assertNotRegex

def assertNotRegex(
    self,
    text,
    unexpected_regex,
    msg=None
)

Fail the test if the text matches the regular expression.

View Source
    def assertNotRegex(self, text, unexpected_regex, msg=None):
        """Fail the test if the text matches the regular expression."""
        if isinstance(unexpected_regex, (str, bytes)):
            unexpected_regex = re.compile(unexpected_regex)
        match = unexpected_regex.search(text)
        if match:
            standardMsg = 'Regex matched: %r matches %r in %r' % (
                text[match.start() : match.end()],
                unexpected_regex.pattern,
                text)
            # _formatMessage ensures the longMessage option is respected
            msg = self._formatMessage(msg, standardMsg)
            raise self.failureException(msg)

assertNotRegexpMatches

def assertNotRegexpMatches(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertNumQueries

def assertNumQueries(
    self,
    num,
    func=None,
    *args,
    using='default',
    **kwargs
)
View Source
    def assertNumQueries(self, num, func=None, *args, using=DEFAULT_DB_ALIAS, **kwargs):
        conn = connections[using]

        context = _AssertNumQueriesContext(self, num, conn)
        if func is None:
            return context

        with context:
            func(*args, **kwargs)

assertQuerysetEqual

def assertQuerysetEqual(
    self,
    qs,
    values,
    transform=None,
    ordered=True,
    msg=None
)
View Source
    def assertQuerysetEqual(self, qs, values, transform=None, ordered=True, msg=None):
        values = list(values)
        # RemovedInDjango41Warning.
        if transform is None:
            if (
                values
                and isinstance(values[0], str)
                and qs
                and not isinstance(qs[0], str)
            ):
                # Transform qs using repr() if the first element of values is a
                # string and the first element of qs is not (which would be the
                # case if qs is a flattened values_list).
                warnings.warn(
                    "In Django 4.1, repr() will not be called automatically "
                    "on a queryset when compared to string values. Set an "
                    "explicit 'transform' to silence this warning.",
                    category=RemovedInDjango41Warning,
                    stacklevel=2,
                )
                transform = repr
        items = qs
        if transform is not None:
            items = map(transform, items)
        if not ordered:
            return self.assertDictEqual(Counter(items), Counter(values), msg=msg)
        # For example qs.iterator() could be passed as qs, but it does not
        # have 'ordered' attribute.
        if len(values) > 1 and hasattr(qs, "ordered") and not qs.ordered:
            raise ValueError(
                "Trying to compare non-ordered queryset against more than one "
                "ordered value."
            )
        return self.assertEqual(list(items), values, msg=msg)

assertRaises

def assertRaises(
    self,
    expected_exception,
    *args,
    **kwargs
)

Fail unless an exception of class expected_exception is raised

by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this::

 with self.assertRaises(SomeException):
     do_something()

An optional keyword argument 'msg' can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the 'exception' attribute. This allows you to inspect the exception after the assertion::

with self.assertRaises(SomeException) as cm:
    do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)
View Source
    def assertRaises(self, expected_exception, *args, **kwargs):
        """Fail unless an exception of class expected_exception is raised
           by the callable when invoked with specified positional and
           keyword arguments. If a different type of exception is
           raised, it will not be caught, and the test case will be
           deemed to have suffered an error, exactly as for an
           unexpected exception.

           If called with the callable and arguments omitted, will return a
           context object used like this::

                with self.assertRaises(SomeException):
                    do_something()

           An optional keyword argument 'msg' can be provided when assertRaises
           is used as a context object.

           The context manager keeps a reference to the exception as
           the 'exception' attribute. This allows you to inspect the
           exception after the assertion::

               with self.assertRaises(SomeException) as cm:
                   do_something()
               the_exception = cm.exception
               self.assertEqual(the_exception.error_code, 3)
        """
        context = _AssertRaisesContext(expected_exception, self)
        try:
            return context.handle('assertRaises', args, kwargs)
        finally:
            # bpo-23890: manually break a reference cycle
            context = None

assertRaisesMessage

def assertRaisesMessage(
    self,
    expected_exception,
    expected_message,
    *args,
    **kwargs
)

Assert that expected_message is found in the message of a raised

exception.

Parameters:

Name Type Description Default
expected_exception None Exception class expected to be raised. None
expected_message None expected error message string value. None
args None Function to be called and extra positional args. None
kwargs None Extra kwargs. None
View Source
    def assertRaisesMessage(
        self, expected_exception, expected_message, *args, **kwargs
    ):
        """
        Assert that expected_message is found in the message of a raised
        exception.

        Args:
            expected_exception: Exception class expected to be raised.
            expected_message: expected error message string value.
            args: Function to be called and extra positional args.
            kwargs: Extra kwargs.
        """
        return self._assertFooMessage(
            self.assertRaises,
            "exception",
            expected_exception,
            expected_message,
            *args,
            **kwargs,
        )

assertRaisesRegex

def assertRaisesRegex(
    self,
    expected_exception,
    expected_regex,
    *args,
    **kwargs
)

Asserts that the message in a raised exception matches a regex.

Parameters:

Name Type Description Default
expected_exception None Exception class expected to be raised. None
expected_regex None Regex (re.Pattern object or string) expected
to be found in error message.
None
args None Function to be called and extra positional args. None
kwargs None Extra kwargs. None
msg None Optional message used in case of failure. Can only be used
when assertRaisesRegex is used as a context manager.
None
View Source
    def assertRaisesRegex(self, expected_exception, expected_regex,
                          *args, **kwargs):
        """Asserts that the message in a raised exception matches a regex.

        Args:
            expected_exception: Exception class expected to be raised.
            expected_regex: Regex (re.Pattern object or string) expected
                    to be found in error message.
            args: Function to be called and extra positional args.
            kwargs: Extra kwargs.
            msg: Optional message used in case of failure. Can only be used
                    when assertRaisesRegex is used as a context manager.
        """
        context = _AssertRaisesContext(expected_exception, self, expected_regex)
        return context.handle('assertRaisesRegex', args, kwargs)

assertRaisesRegexp

def assertRaisesRegexp(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertRedirects

def assertRedirects(
    self,
    response,
    expected_url,
    status_code=302,
    target_status_code=200,
    msg_prefix='',
    fetch_redirect_response=True
)

Assert that a response redirected to a specific URL and that the

redirect URL can be loaded.

Won't work for external links since it uses the test client to do a request (use fetch_redirect_response=False to check such links without fetching them).

View Source
    def assertRedirects(
        self,
        response,
        expected_url,
        status_code=302,
        target_status_code=200,
        msg_prefix="",
        fetch_redirect_response=True,
    ):
        """
        Assert that a response redirected to a specific URL and that the
        redirect URL can be loaded.

        Won't work for external links since it uses the test client to do a
        request (use fetch_redirect_response=False to check such links without
        fetching them).
        """
        if msg_prefix:
            msg_prefix += ": "

        if hasattr(response, "redirect_chain"):
            # The request was a followed redirect
            self.assertTrue(
                response.redirect_chain,
                msg_prefix
                + (
                    "Response didn't redirect as expected: Response code was %d "
                    "(expected %d)"
                )
                % (response.status_code, status_code),
            )

            self.assertEqual(
                response.redirect_chain[0][1],
                status_code,
                msg_prefix
                + (
                    "Initial response didn't redirect as expected: Response code was "
                    "%d (expected %d)"
                )
                % (response.redirect_chain[0][1], status_code),
            )

            url, status_code = response.redirect_chain[-1]

            self.assertEqual(
                response.status_code,
                target_status_code,
                msg_prefix
                + (
                    "Response didn't redirect as expected: Final Response code was %d "
                    "(expected %d)"
                )
                % (response.status_code, target_status_code),
            )

        else:
            # Not a followed redirect
            self.assertEqual(
                response.status_code,
                status_code,
                msg_prefix
                + (
                    "Response didn't redirect as expected: Response code was %d "
                    "(expected %d)"
                )
                % (response.status_code, status_code),
            )

            url = response.url
            scheme, netloc, path, query, fragment = urlsplit(url)

            # Prepend the request path to handle relative path redirects.
            if not path.startswith("/"):
                url = urljoin(response.request["PATH_INFO"], url)
                path = urljoin(response.request["PATH_INFO"], path)

            if fetch_redirect_response:
                # netloc might be empty, or in cases where Django tests the
                # HTTP scheme, the convention is for netloc to be 'testserver'.
                # Trust both as "internal" URLs here.
                domain, port = split_domain_port(netloc)
                if domain and not validate_host(domain, settings.ALLOWED_HOSTS):
                    raise ValueError(
                        "The test client is unable to fetch remote URLs (got %s). "
                        "If the host is served by Django, add '%s' to ALLOWED_HOSTS. "
                        "Otherwise, use "
                        "assertRedirects(..., fetch_redirect_response=False)."
                        % (url, domain)
                    )
                # Get the redirection page, using the same client that was used
                # to obtain the original response.
                extra = response.client.extra or {}
                redirect_response = response.client.get(
                    path,
                    QueryDict(query),
                    secure=(scheme == "https"),
                    **extra,
                )
                self.assertEqual(
                    redirect_response.status_code,
                    target_status_code,
                    msg_prefix
                    + (
                        "Couldn't retrieve redirection page '%s': response code was %d "
                        "(expected %d)"
                    )
                    % (path, redirect_response.status_code, target_status_code),
                )

        self.assertURLEqual(
            url,
            expected_url,
            msg_prefix
            + "Response redirected to '%s', expected '%s'" % (url, expected_url),
        )

assertRegex

def assertRegex(
    self,
    text,
    expected_regex,
    msg=None
)

Fail the test unless the text matches the regular expression.

View Source
    def assertRegex(self, text, expected_regex, msg=None):
        """Fail the test unless the text matches the regular expression."""
        if isinstance(expected_regex, (str, bytes)):
            assert expected_regex, "expected_regex must not be empty."
            expected_regex = re.compile(expected_regex)
        if not expected_regex.search(text):
            standardMsg = "Regex didn't match: %r not found in %r" % (
                expected_regex.pattern, text)
            # _formatMessage ensures the longMessage option is respected
            msg = self._formatMessage(msg, standardMsg)
            raise self.failureException(msg)

assertRegexpMatches

def assertRegexpMatches(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

assertSequenceEqual

def assertSequenceEqual(
    self,
    seq1,
    seq2,
    msg=None,
    seq_type=None
)

An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.

Parameters:

Name Type Description Default
seq1 None The first sequence to compare. None
seq2 None The second sequence to compare. None
seq_type None The expected datatype of the sequences, or None if no
datatype should be enforced.
None
msg None Optional message to use on failure instead of a list of
differences.
None
View Source
    def assertSequenceEqual(self, seq1, seq2, msg=None, seq_type=None):
        """An equality assertion for ordered sequences (like lists and tuples).

        For the purposes of this function, a valid ordered sequence type is one
        which can be indexed, has a length, and has an equality operator.

        Args:
            seq1: The first sequence to compare.
            seq2: The second sequence to compare.
            seq_type: The expected datatype of the sequences, or None if no
                    datatype should be enforced.
            msg: Optional message to use on failure instead of a list of
                    differences.
        """
        if seq_type is not None:
            seq_type_name = seq_type.__name__
            if not isinstance(seq1, seq_type):
                raise self.failureException('First sequence is not a %s: %s'
                                        % (seq_type_name, safe_repr(seq1)))
            if not isinstance(seq2, seq_type):
                raise self.failureException('Second sequence is not a %s: %s'
                                        % (seq_type_name, safe_repr(seq2)))
        else:
            seq_type_name = "sequence"

        differing = None
        try:
            len1 = len(seq1)
        except (TypeError, NotImplementedError):
            differing = 'First %s has no length.    Non-sequence?' % (
                    seq_type_name)

        if differing is None:
            try:
                len2 = len(seq2)
            except (TypeError, NotImplementedError):
                differing = 'Second %s has no length.    Non-sequence?' % (
                        seq_type_name)

        if differing is None:
            if seq1 == seq2:
                return

            differing = '%ss differ: %s != %s\n' % (
                    (seq_type_name.capitalize(),) +
                    _common_shorten_repr(seq1, seq2))

            for i in range(min(len1, len2)):
                try:
                    item1 = seq1[i]
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('\nUnable to index element %d of first %s\n' %
                                 (i, seq_type_name))
                    break

                try:
                    item2 = seq2[i]
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('\nUnable to index element %d of second %s\n' %
                                 (i, seq_type_name))
                    break

                if item1 != item2:
                    differing += ('\nFirst differing element %d:\n%s\n%s\n' %
                                 ((i,) + _common_shorten_repr(item1, item2)))
                    break
            else:
                if (len1 == len2 and seq_type is None and
                    type(seq1) != type(seq2)):
                    # The sequences are the same, but have differing types.
                    return

            if len1 > len2:
                differing += ('\nFirst %s contains %d additional '
                             'elements.\n' % (seq_type_name, len1 - len2))
                try:
                    differing += ('First extra element %d:\n%s\n' %
                                  (len2, safe_repr(seq1[len2])))
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('Unable to index element %d '
                                  'of first %s\n' % (len2, seq_type_name))
            elif len1 < len2:
                differing += ('\nSecond %s contains %d additional '
                             'elements.\n' % (seq_type_name, len2 - len1))
                try:
                    differing += ('First extra element %d:\n%s\n' %
                                  (len1, safe_repr(seq2[len1])))
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('Unable to index element %d '
                                  'of second %s\n' % (len1, seq_type_name))
        standardMsg = differing
        diffMsg = '\n' + '\n'.join(
            difflib.ndiff(pprint.pformat(seq1).splitlines(),
                          pprint.pformat(seq2).splitlines()))

        standardMsg = self._truncateMessage(standardMsg, diffMsg)
        msg = self._formatMessage(msg, standardMsg)
        self.fail(msg)

assertSetEqual

def assertSetEqual(
    self,
    set1,
    set2,
    msg=None
)

A set-specific equality assertion.

Parameters:

Name Type Description Default
set1 None The first set to compare. None
set2 None The second set to compare. None
msg None Optional message to use on failure instead of a list of
differences.
None
View Source
    def assertSetEqual(self, set1, set2, msg=None):
        """A set-specific equality assertion.

        Args:
            set1: The first set to compare.
            set2: The second set to compare.
            msg: Optional message to use on failure instead of a list of
                    differences.

        assertSetEqual uses ducktyping to support different types of sets, and
        is optimized for sets specifically (parameters must support a
        difference method).
        """
        try:
            difference1 = set1.difference(set2)
        except TypeError as e:
            self.fail('invalid type when attempting set difference: %s' % e)
        except AttributeError as e:
            self.fail('first argument does not support set difference: %s' % e)

        try:
            difference2 = set2.difference(set1)
        except TypeError as e:
            self.fail('invalid type when attempting set difference: %s' % e)
        except AttributeError as e:
            self.fail('second argument does not support set difference: %s' % e)

        if not (difference1 or difference2):
            return

        lines = []
        if difference1:
            lines.append('Items in the first set but not the second:')
            for item in difference1:
                lines.append(repr(item))
        if difference2:
            lines.append('Items in the second set but not the first:')
            for item in difference2:
                lines.append(repr(item))

        standardMsg = '\n'.join(lines)
        self.fail(self._formatMessage(msg, standardMsg))

assertTemplateNotUsed

def assertTemplateNotUsed(
    self,
    response=None,
    template_name=None,
    msg_prefix=''
)

Assert that the template with the provided name was NOT used in

rendering the response. Also usable as context manager.

View Source
    def assertTemplateNotUsed(self, response=None, template_name=None, msg_prefix=""):
        """
        Assert that the template with the provided name was NOT used in
        rendering the response. Also usable as context manager.
        """
        context_mgr_template, template_names, msg_prefix = self._assert_template_used(
            response, template_name, msg_prefix
        )
        if context_mgr_template:
            # Use assertTemplateNotUsed as context manager.
            return _AssertTemplateNotUsedContext(self, context_mgr_template)

        self.assertFalse(
            template_name in template_names,
            msg_prefix
            + "Template '%s' was used unexpectedly in rendering the response"
            % template_name,
        )

assertTemplateUsed

def assertTemplateUsed(
    self,
    response=None,
    template_name=None,
    msg_prefix='',
    count=None
)

Assert that the template with the provided name was used in rendering

the response. Also usable as context manager.

View Source
    def assertTemplateUsed(
        self, response=None, template_name=None, msg_prefix="", count=None
    ):
        """
        Assert that the template with the provided name was used in rendering
        the response. Also usable as context manager.
        """
        context_mgr_template, template_names, msg_prefix = self._assert_template_used(
            response, template_name, msg_prefix
        )

        if context_mgr_template:
            # Use assertTemplateUsed as context manager.
            return _AssertTemplateUsedContext(self, context_mgr_template)

        if not template_names:
            self.fail(msg_prefix + "No templates used to render the response")
        self.assertTrue(
            template_name in template_names,
            msg_prefix + "Template '%s' was not a template used to render"
            " the response. Actual template(s) used: %s"
            % (template_name, ", ".join(template_names)),
        )

        if count is not None:
            self.assertEqual(
                template_names.count(template_name),
                count,
                msg_prefix + "Template '%s' was expected to be rendered %d "
                "time(s) but was actually rendered %d time(s)."
                % (template_name, count, template_names.count(template_name)),
            )

assertTrue

def assertTrue(
    self,
    expr,
    msg=None
)

Check that the expression is true.

View Source
    def assertTrue(self, expr, msg=None):
        """Check that the expression is true."""
        if not expr:
            msg = self._formatMessage(msg, "%s is not true" % safe_repr(expr))
            raise self.failureException(msg)

assertTupleEqual

def assertTupleEqual(
    self,
    tuple1,
    tuple2,
    msg=None
)

A tuple-specific equality assertion.

Parameters:

Name Type Description Default
tuple1 None The first tuple to compare. None
tuple2 None The second tuple to compare. None
msg None Optional message to use on failure instead of a list of
differences.
None
View Source
    def assertTupleEqual(self, tuple1, tuple2, msg=None):
        """A tuple-specific equality assertion.

        Args:
            tuple1: The first tuple to compare.
            tuple2: The second tuple to compare.
            msg: Optional message to use on failure instead of a list of
                    differences.
        """
        self.assertSequenceEqual(tuple1, tuple2, msg, seq_type=tuple)

assertURLEqual

def assertURLEqual(
    self,
    url1,
    url2,
    msg_prefix=''
)

Assert that two URLs are the same, ignoring the order of query string

parameters except for parameters with the same name.

For example, /path/?x=1&y=2 is equal to /path/?y=2&x=1, but /path/?a=1&a=2 isn't equal to /path/?a=2&a=1.

View Source
    def assertURLEqual(self, url1, url2, msg_prefix=""):
        """
        Assert that two URLs are the same, ignoring the order of query string
        parameters except for parameters with the same name.

        For example, /path/?x=1&y=2 is equal to /path/?y=2&x=1, but
        /path/?a=1&a=2 isn't equal to /path/?a=2&a=1.
        """

        def normalize(url):
            """Sort the URL's query string parameters."""
            url = str(url)  # Coerce reverse_lazy() URLs.
            scheme, netloc, path, params, query, fragment = urlparse(url)
            query_parts = sorted(parse_qsl(query))
            return urlunparse(
                (scheme, netloc, path, params, urlencode(query_parts), fragment)
            )

        self.assertEqual(
            normalize(url1),
            normalize(url2),
            msg_prefix + "Expected '%s' to equal '%s'." % (url1, url2),
        )

assertWarns

def assertWarns(
    self,
    expected_warning,
    *args,
    **kwargs
)

Fail unless a warning of class warnClass is triggered

by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this::

 with self.assertWarns(SomeWarning):
     do_something()

An optional keyword argument 'msg' can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the 'warning' attribute; similarly, the 'filename' and 'lineno' attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion::

with self.assertWarns(SomeWarning) as cm:
    do_something()
the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)
View Source
    def assertWarns(self, expected_warning, *args, **kwargs):
        """Fail unless a warning of class warnClass is triggered
           by the callable when invoked with specified positional and
           keyword arguments.  If a different type of warning is
           triggered, it will not be handled: depending on the other
           warning filtering rules in effect, it might be silenced, printed
           out, or raised as an exception.

           If called with the callable and arguments omitted, will return a
           context object used like this::

                with self.assertWarns(SomeWarning):
                    do_something()

           An optional keyword argument 'msg' can be provided when assertWarns
           is used as a context object.

           The context manager keeps a reference to the first matching
           warning as the 'warning' attribute; similarly, the 'filename'
           and 'lineno' attributes give you information about the line
           of Python code from which the warning was triggered.
           This allows you to inspect the warning after the assertion::

               with self.assertWarns(SomeWarning) as cm:
                   do_something()
               the_warning = cm.warning
               self.assertEqual(the_warning.some_attribute, 147)
        """
        context = _AssertWarnsContext(expected_warning, self)
        return context.handle('assertWarns', args, kwargs)

assertWarnsMessage

def assertWarnsMessage(
    self,
    expected_warning,
    expected_message,
    *args,
    **kwargs
)

Same as assertRaisesMessage but for assertWarns() instead of

assertRaises().

View Source
    def assertWarnsMessage(self, expected_warning, expected_message, *args, **kwargs):
        """
        Same as assertRaisesMessage but for assertWarns() instead of
        assertRaises().
        """
        return self._assertFooMessage(
            self.assertWarns,
            "warning",
            expected_warning,
            expected_message,
            *args,
            **kwargs,
        )

assertWarnsRegex

def assertWarnsRegex(
    self,
    expected_warning,
    expected_regex,
    *args,
    **kwargs
)

Asserts that the message in a triggered warning matches a regexp.

Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.

Parameters:

Name Type Description Default
expected_warning None Warning class expected to be triggered. None
expected_regex None Regex (re.Pattern object or string) expected
to be found in error message.
None
args None Function to be called and extra positional args. None
kwargs None Extra kwargs. None
msg None Optional message used in case of failure. Can only be used
when assertWarnsRegex is used as a context manager.
None
View Source
    def assertWarnsRegex(self, expected_warning, expected_regex,
                         *args, **kwargs):
        """Asserts that the message in a triggered warning matches a regexp.
        Basic functioning is similar to assertWarns() with the addition
        that only warnings whose messages also match the regular expression
        are considered successful matches.

        Args:
            expected_warning: Warning class expected to be triggered.
            expected_regex: Regex (re.Pattern object or string) expected
                    to be found in error message.
            args: Function to be called and extra positional args.
            kwargs: Extra kwargs.
            msg: Optional message used in case of failure. Can only be used
                    when assertWarnsRegex is used as a context manager.
        """
        context = _AssertWarnsContext(expected_warning, self, expected_regex)
        return context.handle('assertWarnsRegex', args, kwargs)

assertXMLEqual

def assertXMLEqual(
    self,
    xml1,
    xml2,
    msg=None
)

Assert that two XML snippets are semantically the same.

Whitespace in most cases is ignored and attribute ordering is not significant. The arguments must be valid XML.

View Source
    def assertXMLEqual(self, xml1, xml2, msg=None):
        """
        Assert that two XML snippets are semantically the same.
        Whitespace in most cases is ignored and attribute ordering is not
        significant. The arguments must be valid XML.
        """
        try:
            result = compare_xml(xml1, xml2)
        except Exception as e:
            standardMsg = "First or second argument is not valid XML\n%s" % e
            self.fail(self._formatMessage(msg, standardMsg))
        else:
            if not result:
                standardMsg = "%s != %s" % (
                    safe_repr(xml1, True),
                    safe_repr(xml2, True),
                )
                diff = "\n" + "\n".join(
                    difflib.ndiff(xml1.splitlines(), xml2.splitlines())
                )
                standardMsg = self._truncateMessage(standardMsg, diff)
                self.fail(self._formatMessage(msg, standardMsg))

assertXMLNotEqual

def assertXMLNotEqual(
    self,
    xml1,
    xml2,
    msg=None
)

Assert that two XML snippets are not semantically equivalent.

Whitespace in most cases is ignored and attribute ordering is not significant. The arguments must be valid XML.

View Source
    def assertXMLNotEqual(self, xml1, xml2, msg=None):
        """
        Assert that two XML snippets are not semantically equivalent.
        Whitespace in most cases is ignored and attribute ordering is not
        significant. The arguments must be valid XML.
        """
        try:
            result = compare_xml(xml1, xml2)
        except Exception as e:
            standardMsg = "First or second argument is not valid XML\n%s" % e
            self.fail(self._formatMessage(msg, standardMsg))
        else:
            if result:
                standardMsg = "%s == %s" % (
                    safe_repr(xml1, True),
                    safe_repr(xml2, True),
                )
                self.fail(self._formatMessage(msg, standardMsg))

assert_

def assert_(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

countTestCases

def countTestCases(
    self
)
View Source
    def countTestCases(self):
        return 1

debug

def debug(
    self
)

Perform the same as call(), without catching the exception.

View Source
    def debug(self):
        """Perform the same as __call__(), without catching the exception."""
        debug_result = _DebugResult()
        self._setup_and_call(debug_result, debug=True)

defaultTestResult

def defaultTestResult(
    self
)
View Source
    def defaultTestResult(self):
        return result.TestResult()

doCleanups

def doCleanups(
    self
)

Execute all cleanup functions. Normally called for you after

tearDown.

View Source
    def doCleanups(self):
        """Execute all cleanup functions. Normally called for you after
        tearDown."""
        outcome = self._outcome or _Outcome()
        while self._cleanups:
            function, args, kwargs = self._cleanups.pop()
            with outcome.testPartExecutor(self):
                self._callCleanup(function, *args, **kwargs)

        # return this for backwards compatibility
        # even though we no longer use it internally
        return outcome.success

fail

def fail(
    self,
    msg=None
)

Fail immediately, with the given message.

View Source
    def fail(self, msg=None):
        """Fail immediately, with the given message."""
        raise self.failureException(msg)

failIf

def failIf(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

failIfAlmostEqual

def failIfAlmostEqual(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

failIfEqual

def failIfEqual(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

failUnless

def failUnless(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

failUnlessAlmostEqual

def failUnlessAlmostEqual(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

failUnlessEqual

def failUnlessEqual(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

failUnlessRaises

def failUnlessRaises(
    *args,
    **kwargs
)
View Source
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)

id

def id(
    self
)
View Source
    def id(self):
        return "%s.%s" % (strclass(self.__class__), self._testMethodName)

modify_settings

def modify_settings(
    self,
    **kwargs
)

A context manager that temporarily applies changes a list setting and

reverts back to the original value when exiting the context.

View Source
    def modify_settings(self, **kwargs):
        """
        A context manager that temporarily applies changes a list setting and
        reverts back to the original value when exiting the context.
        """
        return modify_settings(**kwargs)

run

def run(
    self,
    result=None
)
View Source
    def run(self, result=None):
        if result is None:
            result = self.defaultTestResult()
            startTestRun = getattr(result, 'startTestRun', None)
            stopTestRun = getattr(result, 'stopTestRun', None)
            if startTestRun is not None:
                startTestRun()
        else:
            stopTestRun = None

        result.startTest(self)
        try:
            testMethod = getattr(self, self._testMethodName)
            if (getattr(self.__class__, "__unittest_skip__", False) or
                getattr(testMethod, "__unittest_skip__", False)):
                # If the class or method was skipped.
                skip_why = (getattr(self.__class__, '__unittest_skip_why__', '')
                            or getattr(testMethod, '__unittest_skip_why__', ''))
                self._addSkip(result, self, skip_why)
                return result

            expecting_failure = (
                getattr(self, "__unittest_expecting_failure__", False) or
                getattr(testMethod, "__unittest_expecting_failure__", False)
            )
            outcome = _Outcome(result)
            try:
                self._outcome = outcome

                with outcome.testPartExecutor(self):
                    self._callSetUp()
                if outcome.success:
                    outcome.expecting_failure = expecting_failure
                    with outcome.testPartExecutor(self, isTest=True):
                        self._callTestMethod(testMethod)
                    outcome.expecting_failure = False
                    with outcome.testPartExecutor(self):
                        self._callTearDown()

                self.doCleanups()
                for test, reason in outcome.skipped:
                    self._addSkip(result, test, reason)
                self._feedErrorsToResult(result, outcome.errors)
                if outcome.success:
                    if expecting_failure:
                        if outcome.expectedFailure:
                            self._addExpectedFailure(result, outcome.expectedFailure)
                        else:
                            self._addUnexpectedSuccess(result)
                    else:
                        result.addSuccess(self)
                return result
            finally:
                # explicitly break reference cycles:
                # outcome.errors -> frame -> outcome -> outcome.errors
                # outcome.expectedFailure -> frame -> outcome -> outcome.expectedFailure
                outcome.errors.clear()
                outcome.expectedFailure = None

                # clear the outcome, no more needed
                self._outcome = None

        finally:
            result.stopTest(self)
            if stopTestRun is not None:
                stopTestRun()

setUp

def setUp(
    self
)

Hook method for setting up the test fixture before exercising it.

View Source
    def setUp(self):
        self.user = Dummy.create_user_and_authenticate(self.client)

settings

def settings(
    self,
    **kwargs
)

A context manager that temporarily sets a setting and reverts to the

original value when exiting the context.

View Source
    def settings(self, **kwargs):
        """
        A context manager that temporarily sets a setting and reverts to the
        original value when exiting the context.
        """
        return override_settings(**kwargs)

shortDescription

def shortDescription(
    self
)

Returns a one-line description of the test, or None if no

description has been provided.

The default implementation of this method returns the first line of the specified test method's docstring.

View Source
    def shortDescription(self):
        """Returns a one-line description of the test, or None if no
        description has been provided.

        The default implementation of this method returns the first line of
        the specified test method's docstring.
        """
        doc = self._testMethodDoc
        return doc.strip().split("\n")[0].strip() if doc else None

skipTest

def skipTest(
    self,
    reason
)

Skip this test.

View Source
    def skipTest(self, reason):
        """Skip this test."""
        raise SkipTest(reason)

subTest

def subTest(
    self,
    msg=<object object at 0x7fbd5e331d90>,
    **params
)

Return a context manager that will return the enclosed block

of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.

View Source
    @contextlib.contextmanager
    def subTest(self, msg=_subtest_msg_sentinel, **params):
        """Return a context manager that will return the enclosed block
        of code in a subtest identified by the optional message and
        keyword parameters.  A failure in the subtest marks the test
        case as failed but resumes execution at the end of the enclosed
        block, allowing further test code to be executed.
        """
        if self._outcome is None or not self._outcome.result_supports_subtests:
            yield
            return
        parent = self._subtest
        if parent is None:
            params_map = _OrderedChainMap(params)
        else:
            params_map = parent.params.new_child(params)
        self._subtest = _SubTest(self, msg, params_map)
        try:
            with self._outcome.testPartExecutor(self._subtest, isTest=True):
                yield
            if not self._outcome.success:
                result = self._outcome.result
                if result is not None and result.failfast:
                    raise _ShouldStop
            elif self._outcome.expectedFailure:
                # If the test is expecting a failure, we really want to
                # stop now and register the expected failure.
                raise _ShouldStop
        finally:
            self._subtest = parent

tearDown

def tearDown(
    self
)

Hook method for deconstructing the test fixture after testing it.

View Source
    def tearDown(self):
        "Hook method for deconstructing the test fixture after testing it."
        pass

test_inference_input_pil_image

def test_inference_input_pil_image(
    self
)
View Source
    def test_inference_input_pil_image(self):
        img = to_pil_image(torch.zeros(1, 5, 5))
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format="jpeg")
        img_byte_arr = img_byte_arr.getvalue()

        torch.manual_seed(42)
        torch_model = torch.jit.script(torch.nn.Sequential(
            torch.nn.Conv2d(1, 2, 3),
            torch.nn.Flatten(),
            torch.nn.Linear(3*3, 2)
        ))
        model = Dummy.create_model(input_shape=[None, 5, 5], weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            img_byte_arr,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([0, 0]) == inference_tensor))

test_inference_input_pil_image_base64

def test_inference_input_pil_image_base64(
    self
)
View Source
    def test_inference_input_pil_image_base64(self):
        img = to_pil_image(torch.zeros(1, 5, 5))
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format="jpeg")
        img_byte_arr = img_byte_arr.getvalue()
        inp = base64.b64encode(img_byte_arr)

        torch.manual_seed(42)
        torch_model = torch.jit.script(torch.nn.Sequential(
            torch.nn.Conv2d(1, 2, 3),
            torch.nn.Flatten(),
            torch.nn.Linear(3*3, 2)
        ))
        model = Dummy.create_model(input_shape=[None, 5, 5], weights=from_torch_module(torch_model))
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        inference_tensor = torch.as_tensor(inference)
        self.assertTrue(torch.all(torch.tensor([0, 0]) == inference_tensor))

test_inference_input_shape_negative

def test_inference_input_shape_negative(
    self
)
View Source
    def test_inference_input_shape_negative(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_model(input_shape=[None, 5])
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="WARNING") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": str(training.model.id), "model_input": input_file}
            )
        self.assertEqual(cm.output, [
            "WARNING:django.request:Bad Request: /api/inference/",
        ])
        self.assertEqual(response.status_code, 400)
        self.assertEqual(response.json()[0], "Input shape does not match model input shape.")

test_inference_input_shape_positive

def test_inference_input_shape_positive(
    self
)
View Source
    def test_inference_input_shape_positive(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_model(input_shape=[None, 3])
        training = Dummy.create_training(actor=self.user, model=model)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

test_inference_json

def test_inference_json(
    self
)
View Source
    def test_inference_json(self):
        inp = torch.zeros(3, 3).tolist()
        training = Dummy.create_training(actor=self.user)
        response = self.client.post(
            f"{BASE_URL}/inference/",
            json.dumps({"model_id": str(training.model.id), "model_input": inp}),
            content_type="application/json"
        )
        self.assertEqual(response.status_code, 200)
        response_json = response.json()
        self.assertEqual({}, response_json["uncertainty"])
        inference = response_json["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

test_inference_json_binary_output

def test_inference_json_binary_output(
    self
)
View Source
    def test_inference_json_binary_output(self):
        inp = torch.zeros(3, 3).tolist()
        training = Dummy.create_training(actor=self.user)
        response = self.client.post(
            f"{BASE_URL}/inference/",
            json.dumps({"model_id": str(training.model.id), "model_input": inp, "return_format": "binary"}),
            content_type="application/json"
        )
        self.assertEqual(response.status_code, 200)
        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

test_inference_result_normal_model

def test_inference_result_normal_model(
    self
)
View Source
    def test_inference_result_normal_model(self):
        torch_model = mxb()  # normal model
        self._inference_result(torch_model)

test_inference_result_torchscript_model

def test_inference_result_torchscript_model(
    self
)
View Source
    def test_inference_result_torchscript_model(self):
        torch_model = torch.jit.script(mxb())  # torchscript model
        self._inference_result(torch_model)

test_inference_success

def test_inference_success(
    self
)
View Source
    def test_inference_success(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        training = Dummy.create_training(actor=self.user)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        response = self.client.post(
            f"{BASE_URL}/inference/",
            {"model_id": str(training.model.id), "model_input": input_file}
        )
        self.assertEqual(response.status_code, 200)

        results = pickle.loads(response.content)
        self.assertEqual({}, results["uncertainty"])
        inference = results["inference"]
        self.assertIsNotNone(inference)
        results = torch.as_tensor(inference)
        self.assertTrue(torch.all(results <= 1))
        self.assertTrue(torch.all(results >= 0))

test_inference_with_unknown_content_type

def test_inference_with_unknown_content_type(
    self
)
View Source
    def test_inference_with_unknown_content_type(self):
        with self.assertLogs("root", level="INFO") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": "not important", "model_input": "not important"},
                "application/octet-stream"
            )
        self.assertEqual(cm.output, [
            "ERROR:fl.server:Unknown Content-Type 'application/octet-stream'",
            "WARNING:django.request:Unsupported Media Type: /api/inference/",
        ])
        self.assertEqual(response.status_code, 415)

test_model_not_exist

def test_model_not_exist(
    self
)
View Source
    def test_model_not_exist(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        Dummy.create_model()
        unused_id = uuid4()
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="WARNING") as cm:
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": unused_id, "model_input": input_file},
                # 'multipart/form-data; boundary=...' is set automatically (default)
            )
        self.assertEqual(cm.output, [
            "WARNING:django.request:Bad Request: /api/inference/",
        ])
        self.assertEqual(response.status_code, 400)
        response_json = response.json()
        self.assertIsNotNone(response_json)
        self.assertEqual(f"Model {unused_id} not found.", response_json["detail"])

test_model_weights_corrupted

def test_model_weights_corrupted(
    self
)
View Source
    def test_model_weights_corrupted(self):
        inp = from_torch_tensor(torch.zeros(3, 3))
        model = Dummy.create_broken_model()
        Dummy.create_training(model=model, actor=self.user)
        input_file = SimpleUploadedFile(
            "input.pt",
            inp,
            content_type="application/octet-stream"
        )
        with self.assertLogs("root", level="ERROR"):
            response = self.client.post(
                f"{BASE_URL}/inference/",
                {"model_id": model.id, "model_input": input_file},
            )
        self.assertEqual(response.status_code, 500)
        response_json = response.json()
        self.assertIsNotNone(response_json)
        self.assertEqual("Error loading torch object", response_json["detail"])

mxb

class mxb(
    *args,
    **kwargs
)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.

View Source
class mxb(torch.nn.Module):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return 2*x + 5

Ancestors (in MRO)

  • torch.nn.modules.module.Module

Class variables

T_destination
call_super_init
dump_patches

Methods

add_module

def add_module(
    self,
    name: str,
    module: Optional[ForwardRef('Module')]
) -> None

Add a child module to the current module.

The module can be accessed as an attribute using the given name.

Parameters:

Name Type Description Default
name str name of the child module. The child module can be
accessed from this module using the given name
None
module Module child module to be added to the module. None
View Source
    def add_module(self, name: str, module: Optional["Module"]) -> None:
        r"""Add a child module to the current module.

        The module can be accessed as an attribute using the given name.

        Args:
            name (str): name of the child module. The child module can be
                accessed from this module using the given name
            module (Module): child module to be added to the module.
        """
        if not isinstance(module, Module) and module is not None:
            raise TypeError(f"{torch.typename(module)} is not a Module subclass")
        elif not isinstance(name, str):
            raise TypeError(
                f"module name should be a string. Got {torch.typename(name)}"
            )
        elif hasattr(self, name) and name not in self._modules:
            raise KeyError(f"attribute '{name}' already exists")
        elif "." in name:
            raise KeyError(f'module name can\'t contain ".", got: {name}')
        elif name == "":
            raise KeyError('module name can\'t be empty string ""')
        for hook in _global_module_registration_hooks.values():
            output = hook(self, name, module)
            if output is not None:
                module = output
        self._modules[name] = module

apply

def apply(
    self: ~T,
    fn: Callable[[ForwardRef('Module')], NoneType]
) -> ~T

Apply fn recursively to every submodule (as returned by .children()) as well as self.

Typical use includes initializing the parameters of a model (see also :ref:nn-init-doc).

Parameters:

Name Type Description Default
fn ( None class:Module -> None): function to be applied to each submodule None

Returns:

Type Description
Module self
View Source
    def apply(self: T, fn: Callable[["Module"], None]) -> T:
        r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self.

        Typical use includes initializing the parameters of a model
        (see also :ref:`nn-init-doc`).

        Args:
            fn (:class:`Module` -> None): function to be applied to each submodule

        Returns:
            Module: self

        Example::

            >>> @torch.no_grad()
            >>> def init_weights(m):
            >>>     print(m)
            >>>     if type(m) == nn.Linear:
            >>>         m.weight.fill_(1.0)
            >>>         print(m.weight)
            >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
            >>> net.apply(init_weights)
            Linear(in_features=2, out_features=2, bias=True)
            Parameter containing:
            tensor([[1., 1.],
                    [1., 1.]], requires_grad=True)
            Linear(in_features=2, out_features=2, bias=True)
            Parameter containing:
            tensor([[1., 1.],
                    [1., 1.]], requires_grad=True)
            Sequential(
              (0): Linear(in_features=2, out_features=2, bias=True)
              (1): Linear(in_features=2, out_features=2, bias=True)
            )

        """
        for module in self.children():
            module.apply(fn)
        fn(self)
        return self

bfloat16

def bfloat16(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to bfloat16 datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def bfloat16(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t)

buffers

def buffers(
    self,
    recurse: bool = True
) -> Iterator[torch.Tensor]

Return an iterator over module buffers.

Parameters:

Name Type Description Default
recurse bool if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module.
None

Yields:

Type Description
torch.Tensor module buffer
View Source
    def buffers(self, recurse: bool = True) -> Iterator[Tensor]:
        r"""Return an iterator over module buffers.

        Args:
            recurse (bool): if True, then yields buffers of this module
                and all submodules. Otherwise, yields only buffers that
                are direct members of this module.

        Yields:
            torch.Tensor: module buffer

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for buf in model.buffers():
            >>>     print(type(buf), buf.size())
            <class 'torch.Tensor'> (20L,)
            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

        """
        for _, buf in self.named_buffers(recurse=recurse):
            yield buf

children

def children(
    self
) -> Iterator[ForwardRef('Module')]

Return an iterator over immediate children modules.

Yields:

Type Description
Module a child module
View Source
    def children(self) -> Iterator["Module"]:
        r"""Return an iterator over immediate children modules.

        Yields:
            Module: a child module
        """
        for name, module in self.named_children():
            yield module

compile

def compile(
    self,
    *args,
    **kwargs
)

Compile this Module's forward using :func:torch.compile.

This Module's __call__ method is compiled and all arguments are passed as-is to :func:torch.compile.

See :func:torch.compile for details on the arguments for this function.

View Source
    def compile(self, *args, **kwargs):
        """
        Compile this Module's forward using :func:`torch.compile`.

        This Module's `__call__` method is compiled and all arguments are passed as-is
        to :func:`torch.compile`.

        See :func:`torch.compile` for details on the arguments for this function.
        """
        self._compiled_call_impl = torch.compile(self._call_impl, *args, **kwargs)

cpu

def cpu(
    self: ~T
) -> ~T

Move all model parameters and buffers to the CPU.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def cpu(self: T) -> T:
        r"""Move all model parameters and buffers to the CPU.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.cpu())

cuda

def cuda(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def cuda(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the GPU.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on GPU while being optimized.

        .. note::
            This method modifies the module in-place.

        Args:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.cuda(device))

double

def double(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to double datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def double(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``double`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.double() if t.is_floating_point() else t)

eval

def eval(
    self: ~T
) -> ~T

Set the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout, :class:BatchNorm, etc.

This is equivalent with :meth:self.train(False) <torch.nn.Module.train>.

See :ref:locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.

Returns:

Type Description
Module self
View Source
    def eval(self: T) -> T:
        r"""Set the module in evaluation mode.

        This has any effect only on certain modules. See documentations of
        particular modules for details of their behaviors in training/evaluation
        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
        etc.

        This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.

        See :ref:`locally-disable-grad-doc` for a comparison between
        `.eval()` and several similar mechanisms that may be confused with it.

        Returns:
            Module: self
        """
        return self.train(False)

extra_repr

def extra_repr(
    self
) -> str

Set the extra representation of the module.

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

View Source
    def extra_repr(self) -> str:
        r"""Set the extra representation of the module.

        To print customized extra information, you should re-implement
        this method in your own modules. Both single-line and multi-line
        strings are acceptable.
        """
        return ""

float

def float(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to float datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def float(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``float`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.float() if t.is_floating_point() else t)

forward

def forward(
    self,
    x: torch.Tensor
) -> torch.Tensor

Define the computation performed at every call.

Should be overridden by all subclasses.

.. note:: Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

View Source
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return 2*x + 5

get_buffer

def get_buffer(
    self,
    target: str
) -> 'Tensor'

Return the buffer given by target if it exists, otherwise throw an error.

See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.

Parameters:

Name Type Description Default
target None The fully-qualified string name of the buffer
to look for. (See get_submodule for how to specify a
fully-qualified string.)
None

Returns:

Type Description
torch.Tensor The buffer referenced by target

Raises:

Type Description
AttributeError If the target string references an invalid
path or resolves to something that is not a
buffer
View Source
    def get_buffer(self, target: str) -> "Tensor":
        """Return the buffer given by ``target`` if it exists, otherwise throw an error.

        See the docstring for ``get_submodule`` for a more detailed
        explanation of this method's functionality as well as how to
        correctly specify ``target``.

        Args:
            target: The fully-qualified string name of the buffer
                to look for. (See ``get_submodule`` for how to specify a
                fully-qualified string.)

        Returns:
            torch.Tensor: The buffer referenced by ``target``

        Raises:
            AttributeError: If the target string references an invalid
                path or resolves to something that is not a
                buffer
        """
        module_path, _, buffer_name = target.rpartition(".")

        mod: torch.nn.Module = self.get_submodule(module_path)

        if not hasattr(mod, buffer_name):
            raise AttributeError(
                mod._get_name() + " has no attribute `" + buffer_name + "`"
            )

        buffer: torch.Tensor = getattr(mod, buffer_name)

        if buffer_name not in mod._buffers:
            raise AttributeError("`" + buffer_name + "` is not a buffer")

        return buffer

get_extra_state

def get_extra_state(
    self
) -> Any

Return any extra state to include in the module's state_dict.

Implement this and a corresponding :func:set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().

Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

Returns:

Type Description
object Any extra state to store in the module's state_dict
View Source
    def get_extra_state(self) -> Any:
        """Return any extra state to include in the module's state_dict.

        Implement this and a corresponding :func:`set_extra_state` for your module
        if you need to store extra state. This function is called when building the
        module's `state_dict()`.

        Note that extra state should be picklable to ensure working serialization
        of the state_dict. We only provide provide backwards compatibility guarantees
        for serializing Tensors; other objects may break backwards compatibility if
        their serialized pickled form changes.

        Returns:
            object: Any extra state to store in the module's state_dict
        """
        raise RuntimeError(
            "Reached a code path in Module.get_extra_state() that should never be called. "
            "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
            "to report this bug."
        )

get_parameter

def get_parameter(
    self,
    target: str
) -> 'Parameter'

Return the parameter given by target if it exists, otherwise throw an error.

See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.

Parameters:

Name Type Description Default
target None The fully-qualified string name of the Parameter
to look for. (See get_submodule for how to specify a
fully-qualified string.)
None

Returns:

Type Description
torch.nn.Parameter The Parameter referenced by target

Raises:

Type Description
AttributeError If the target string references an invalid
path or resolves to something that is not an
nn.Parameter
View Source
    def get_parameter(self, target: str) -> "Parameter":
        """Return the parameter given by ``target`` if it exists, otherwise throw an error.

        See the docstring for ``get_submodule`` for a more detailed
        explanation of this method's functionality as well as how to
        correctly specify ``target``.

        Args:
            target: The fully-qualified string name of the Parameter
                to look for. (See ``get_submodule`` for how to specify a
                fully-qualified string.)

        Returns:
            torch.nn.Parameter: The Parameter referenced by ``target``

        Raises:
            AttributeError: If the target string references an invalid
                path or resolves to something that is not an
                ``nn.Parameter``
        """
        module_path, _, param_name = target.rpartition(".")

        mod: torch.nn.Module = self.get_submodule(module_path)

        if not hasattr(mod, param_name):
            raise AttributeError(
                mod._get_name() + " has no attribute `" + param_name + "`"
            )

        param: torch.nn.Parameter = getattr(mod, param_name)

        if not isinstance(param, torch.nn.Parameter):
            raise AttributeError("`" + param_name + "` is not an " "nn.Parameter")

        return param

get_submodule

def get_submodule(
    self,
    target: str
) -> 'Module'

Return the submodule given by target if it exists, otherwise throw an error.

For example, let's say you have an nn.Module A that looks like this:

.. code-block:: text

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

Parameters:

Name Type Description Default
target None The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
None

Returns:

Type Description
torch.nn.Module The submodule referenced by target

Raises:

Type Description
AttributeError If the target string references an invalid
path or resolves to something that is not an
nn.Module
View Source
    def get_submodule(self, target: str) -> "Module":
        """Return the submodule given by ``target`` if it exists, otherwise throw an error.

        For example, let's say you have an ``nn.Module`` ``A`` that
        looks like this:

        .. code-block:: text

            A(
                (net_b): Module(
                    (net_c): Module(
                        (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
                    )
                    (linear): Linear(in_features=100, out_features=200, bias=True)
                )
            )

        (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
        submodule ``net_b``, which itself has two submodules ``net_c``
        and ``linear``. ``net_c`` then has a submodule ``conv``.)

        To check whether or not we have the ``linear`` submodule, we
        would call ``get_submodule("net_b.linear")``. To check whether
        we have the ``conv`` submodule, we would call
        ``get_submodule("net_b.net_c.conv")``.

        The runtime of ``get_submodule`` is bounded by the degree
        of module nesting in ``target``. A query against
        ``named_modules`` achieves the same result, but it is O(N) in
        the number of transitive modules. So, for a simple check to see
        if some submodule exists, ``get_submodule`` should always be
        used.

        Args:
            target: The fully-qualified string name of the submodule
                to look for. (See above example for how to specify a
                fully-qualified string.)

        Returns:
            torch.nn.Module: The submodule referenced by ``target``

        Raises:
            AttributeError: If the target string references an invalid
                path or resolves to something that is not an
                ``nn.Module``
        """
        if target == "":
            return self

        atoms: List[str] = target.split(".")
        mod: torch.nn.Module = self

        for item in atoms:
            if not hasattr(mod, item):
                raise AttributeError(
                    mod._get_name() + " has no " "attribute `" + item + "`"
                )

            mod = getattr(mod, item)

            if not isinstance(mod, torch.nn.Module):
                raise AttributeError("`" + item + "` is not " "an nn.Module")

        return mod

half

def half(
    self: ~T
) -> ~T

Casts all floating point parameters and buffers to half datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module self
View Source
    def half(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``half`` datatype.

        .. note::
            This method modifies the module in-place.

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.half() if t.is_floating_point() else t)

ipu

def ipu(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the IPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the IPU.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on IPU while being optimized.

        .. note::
            This method modifies the module in-place.

        Arguments:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.ipu(device))

load_state_dict

def load_state_dict(
    self,
    state_dict: Mapping[str, Any],
    strict: bool = True,
    assign: bool = False
)

Copy parameters and buffers from :attr:state_dict into this module and its descendants.

If :attr:strict is True, then the keys of :attr:state_dict must exactly match the keys returned by this module's :meth:~torch.nn.Module.state_dict function.

.. warning:: If :attr:assign is True the optimizer must be created after the call to :attr:load_state_dict unless :func:~torch.__future__.get_swap_module_params_on_conversion is True.

Parameters:

Name Type Description Default
state_dict dict a dict containing parameters and
persistent buffers.
None
strict bool whether to strictly enforce that the keys
in :attr:state_dict match the keys returned by this module's
:meth:~torch.nn.Module.state_dict function. Default: True
None
assign bool When False, the properties of the tensors
in the current module are preserved while when True, the
properties of the Tensors in the state dict are preserved. The only
exception is the requires_grad field of :class:~torch.nn.Parameters
for which the value from the module is preserved.
Default: False
None

Returns:

Type Description
None NamedTuple with missing_keys and unexpected_keys fields:
missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided state_dict.
unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided state_dict.
View Source
    def load_state_dict(
        self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False
    ):
        r"""Copy parameters and buffers from :attr:`state_dict` into this module and its descendants.

        If :attr:`strict` is ``True``, then
        the keys of :attr:`state_dict` must exactly match the keys returned
        by this module's :meth:`~torch.nn.Module.state_dict` function.

        .. warning::
            If :attr:`assign` is ``True`` the optimizer must be created after
            the call to :attr:`load_state_dict` unless
            :func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.

        Args:
            state_dict (dict): a dict containing parameters and
                persistent buffers.
            strict (bool, optional): whether to strictly enforce that the keys
                in :attr:`state_dict` match the keys returned by this module's
                :meth:`~torch.nn.Module.state_dict` function. Default: ``True``
            assign (bool, optional): When ``False``, the properties of the tensors
                in the current module are preserved while when ``True``, the
                properties of the Tensors in the state dict are preserved. The only
                exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s
                for which the value from the module is preserved.
                Default: ``False``

        Returns:
            ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
                * **missing_keys** is a list of str containing any keys that are expected
                    by this module but missing from the provided ``state_dict``.
                * **unexpected_keys** is a list of str containing the keys that are not
                    expected by this module but present in the provided ``state_dict``.

        Note:
            If a parameter or buffer is registered as ``None`` and its corresponding key
            exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
            ``RuntimeError``.
        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(
                f"Expected state_dict to be dict-like, got {type(state_dict)}."
            )

        missing_keys: List[str] = []
        unexpected_keys: List[str] = []
        error_msgs: List[str] = []

        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = OrderedDict(state_dict)
        if metadata is not None:
            # mypy isn't aware that "_metadata" exists in state_dict
            state_dict._metadata = metadata  # type: ignore[attr-defined]

        def load(module, local_state_dict, prefix=""):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            if assign:
                local_metadata["assign_to_params_buffers"] = assign
            module._load_from_state_dict(
                local_state_dict,
                prefix,
                local_metadata,
                True,
                missing_keys,
                unexpected_keys,
                error_msgs,
            )
            for name, child in module._modules.items():
                if child is not None:
                    child_prefix = prefix + name + "."
                    child_state_dict = {
                        k: v
                        for k, v in local_state_dict.items()
                        if k.startswith(child_prefix)
                    }
                    load(child, child_state_dict, child_prefix)  # noqa: F821

            # Note that the hook can modify missing_keys and unexpected_keys.
            incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
            for hook in module._load_state_dict_post_hooks.values():
                out = hook(module, incompatible_keys)
                assert out is None, (
                    "Hooks registered with ``register_load_state_dict_post_hook`` are not"
                    "expected to return new values, if incompatible_keys need to be modified,"
                    "it should be done inplace."
                )

        load(self, state_dict)
        del load

        if strict:
            if len(unexpected_keys) > 0:
                error_msgs.insert(
                    0,
                    "Unexpected key(s) in state_dict: {}. ".format(
                        ", ".join(f'"{k}"' for k in unexpected_keys)
                    ),
                )
            if len(missing_keys) > 0:
                error_msgs.insert(
                    0,
                    "Missing key(s) in state_dict: {}. ".format(
                        ", ".join(f'"{k}"' for k in missing_keys)
                    ),
                )

        if len(error_msgs) > 0:
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(
                    self.__class__.__name__, "\n\t".join(error_msgs)
                )
            )
        return _IncompatibleKeys(missing_keys, unexpected_keys)

modules

def modules(
    self
) -> Iterator[ForwardRef('Module')]

Return an iterator over all modules in the network.

Yields:

Type Description
Module a module in the network
View Source
    def modules(self) -> Iterator["Module"]:
        r"""Return an iterator over all modules in the network.

        Yields:
            Module: a module in the network

        Note:
            Duplicate modules are returned only once. In the following
            example, ``l`` will be returned only once.

        Example::

            >>> l = nn.Linear(2, 2)
            >>> net = nn.Sequential(l, l)
            >>> for idx, m in enumerate(net.modules()):
            ...     print(idx, '->', m)

            0 -> Sequential(
              (0): Linear(in_features=2, out_features=2, bias=True)
              (1): Linear(in_features=2, out_features=2, bias=True)
            )
            1 -> Linear(in_features=2, out_features=2, bias=True)

        """
        for _, module in self.named_modules():
            yield module

mtia

def mtia(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the MTIA.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def mtia(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the MTIA.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on MTIA while being optimized.

        .. note::
            This method modifies the module in-place.

        Arguments:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.mtia(device))

named_buffers

def named_buffers(
    self,
    prefix: str = '',
    recurse: bool = True,
    remove_duplicate: bool = True
) -> Iterator[Tuple[str, torch.Tensor]]

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Parameters:

Name Type Description Default
prefix str prefix to prepend to all buffer names. None
recurse bool if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module. Defaults to True.
None
remove_duplicate bool whether to remove the duplicated buffers in the result. Defaults to True. True

Yields:

Type Description
None (str, torch.Tensor): Tuple containing the name and buffer
View Source
    def named_buffers(
        self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
    ) -> Iterator[Tuple[str, Tensor]]:
        r"""Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

        Args:
            prefix (str): prefix to prepend to all buffer names.
            recurse (bool, optional): if True, then yields buffers of this module
                and all submodules. Otherwise, yields only buffers that
                are direct members of this module. Defaults to True.
            remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.

        Yields:
            (str, torch.Tensor): Tuple containing the name and buffer

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for name, buf in self.named_buffers():
            >>>     if name in ['running_var']:
            >>>         print(buf.size())

        """
        gen = self._named_members(
            lambda module: module._buffers.items(),
            prefix=prefix,
            recurse=recurse,
            remove_duplicate=remove_duplicate,
        )
        yield from gen

named_children

def named_children(
    self
) -> Iterator[Tuple[str, ForwardRef('Module')]]

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields:

Type Description
None (str, Module): Tuple containing a name and child module
View Source
    def named_children(self) -> Iterator[Tuple[str, "Module"]]:
        r"""Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

        Yields:
            (str, Module): Tuple containing a name and child module

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for name, module in model.named_children():
            >>>     if name in ['conv4', 'conv5']:
            >>>         print(module)

        """
        memo = set()
        for name, module in self._modules.items():
            if module is not None and module not in memo:
                memo.add(module)
                yield name, module

named_modules

def named_modules(
    self,
    memo: Optional[Set[ForwardRef('Module')]] = None,
    prefix: str = '',
    remove_duplicate: bool = True
)

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Parameters:

Name Type Description Default
memo None a memo to store the set of modules already added to the result None
prefix None a prefix that will be added to the name of the module None
remove_duplicate None whether to remove the duplicated module instances in the result
or not
None

Yields:

Type Description
None (str, Module): Tuple of name and module
View Source
    def named_modules(
        self,
        memo: Optional[Set["Module"]] = None,
        prefix: str = "",
        remove_duplicate: bool = True,
    ):
        r"""Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

        Args:
            memo: a memo to store the set of modules already added to the result
            prefix: a prefix that will be added to the name of the module
            remove_duplicate: whether to remove the duplicated module instances in the result
                or not

        Yields:
            (str, Module): Tuple of name and module

        Note:
            Duplicate modules are returned only once. In the following
            example, ``l`` will be returned only once.

        Example::

            >>> l = nn.Linear(2, 2)
            >>> net = nn.Sequential(l, l)
            >>> for idx, m in enumerate(net.named_modules()):
            ...     print(idx, '->', m)

            0 -> ('', Sequential(
              (0): Linear(in_features=2, out_features=2, bias=True)
              (1): Linear(in_features=2, out_features=2, bias=True)
            ))
            1 -> ('0', Linear(in_features=2, out_features=2, bias=True))

        """
        if memo is None:
            memo = set()
        if self not in memo:
            if remove_duplicate:
                memo.add(self)
            yield prefix, self
            for name, module in self._modules.items():
                if module is None:
                    continue
                submodule_prefix = prefix + ("." if prefix else "") + name
                yield from module.named_modules(
                    memo, submodule_prefix, remove_duplicate
                )

named_parameters

def named_parameters(
    self,
    prefix: str = '',
    recurse: bool = True,
    remove_duplicate: bool = True
) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters:

Name Type Description Default
prefix str prefix to prepend to all parameter names. None
recurse bool if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
None
remove_duplicate bool whether to remove the duplicated
parameters in the result. Defaults to True.
None

Yields:

Type Description
None (str, Parameter): Tuple containing the name and parameter
View Source
    def named_parameters(
        self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
    ) -> Iterator[Tuple[str, Parameter]]:
        r"""Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

        Args:
            prefix (str): prefix to prepend to all parameter names.
            recurse (bool): if True, then yields parameters of this module
                and all submodules. Otherwise, yields only parameters that
                are direct members of this module.
            remove_duplicate (bool, optional): whether to remove the duplicated
                parameters in the result. Defaults to True.

        Yields:
            (str, Parameter): Tuple containing the name and parameter

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for name, param in self.named_parameters():
            >>>     if name in ['bias']:
            >>>         print(param.size())

        """
        gen = self._named_members(
            lambda module: module._parameters.items(),
            prefix=prefix,
            recurse=recurse,
            remove_duplicate=remove_duplicate,
        )
        yield from gen

parameters

def parameters(
    self,
    recurse: bool = True
) -> Iterator[torch.nn.parameter.Parameter]

Return an iterator over module parameters.

This is typically passed to an optimizer.

Parameters:

Name Type Description Default
recurse bool if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
None

Yields:

Type Description
Parameter module parameter
View Source
    def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
        r"""Return an iterator over module parameters.

        This is typically passed to an optimizer.

        Args:
            recurse (bool): if True, then yields parameters of this module
                and all submodules. Otherwise, yields only parameters that
                are direct members of this module.

        Yields:
            Parameter: module parameter

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> for param in model.parameters():
            >>>     print(type(param), param.size())
            <class 'torch.Tensor'> (20L,)
            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

        """
        for name, param in self.named_parameters(recurse=recurse):
            yield param

register_backward_hook

def register_backward_hook(
    self,
    hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]]
) -> torch.utils.hooks.RemovableHandle

Register a backward hook on the module.

This function is deprecated in favor of :meth:~torch.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_backward_hook(
        self, hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]]
    ) -> RemovableHandle:
        r"""Register a backward hook on the module.

        This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
        the behavior of this function will change in future versions.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``

        """
        if self._is_full_backward_hook is True:
            raise RuntimeError(
                "Cannot use both regular backward hooks and full backward hooks on a "
                "single Module. Please use only one of them."
            )

        self._is_full_backward_hook = False

        handle = RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        return handle

register_buffer

def register_buffer(
    self,
    name: str,
    tensor: Optional[torch.Tensor],
    persistent: bool = True
) -> None

Add a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting :attr:persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's :attr:state_dict.

Buffers can be accessed as attributes using given names.

Parameters:

Name Type Description Default
name str name of the buffer. The buffer can be accessed
from this module using the given name
None
tensor Tensor or None buffer to be registered. If None, then operations
that run on buffers, such as :attr:cuda, are ignored. If None,
the buffer is not included in the module's :attr:state_dict.
None
persistent bool whether the buffer is part of this module's
:attr:state_dict.
None
View Source
    def register_buffer(
        self, name: str, tensor: Optional[Tensor], persistent: bool = True
    ) -> None:
        r"""Add a buffer to the module.

        This is typically used to register a buffer that should not to be
        considered a model parameter. For example, BatchNorm's ``running_mean``
        is not a parameter, but is part of the module's state. Buffers, by
        default, are persistent and will be saved alongside parameters. This
        behavior can be changed by setting :attr:`persistent` to ``False``. The
        only difference between a persistent buffer and a non-persistent buffer
        is that the latter will not be a part of this module's
        :attr:`state_dict`.

        Buffers can be accessed as attributes using given names.

        Args:
            name (str): name of the buffer. The buffer can be accessed
                from this module using the given name
            tensor (Tensor or None): buffer to be registered. If ``None``, then operations
                that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
                the buffer is **not** included in the module's :attr:`state_dict`.
            persistent (bool): whether the buffer is part of this module's
                :attr:`state_dict`.

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> self.register_buffer('running_mean', torch.zeros(num_features))

        """
        if persistent is False and isinstance(self, torch.jit.ScriptModule):
            raise RuntimeError("ScriptModule does not support non-persistent buffers")

        if "_buffers" not in self.__dict__:
            raise AttributeError("cannot assign buffer before Module.__init__() call")
        elif not isinstance(name, str):
            raise TypeError(
                f"buffer name should be a string. Got {torch.typename(name)}"
            )
        elif "." in name:
            raise KeyError('buffer name can\'t contain "."')
        elif name == "":
            raise KeyError('buffer name can\'t be empty string ""')
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError(f"attribute '{name}' already exists")
        elif tensor is not None and not isinstance(tensor, torch.Tensor):
            raise TypeError(
                f"cannot assign '{torch.typename(tensor)}' object to buffer '{name}' "
                "(torch Tensor or None required)"
            )
        else:
            for hook in _global_buffer_registration_hooks.values():
                output = hook(self, name, tensor)
                if output is not None:
                    tensor = output
            self._buffers[name] = tensor
            if persistent:
                self._non_persistent_buffers_set.discard(name)
            else:
                self._non_persistent_buffers_set.add(name)

register_forward_hook

def register_forward_hook(
    self,
    hook: Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]],
    *,
    prepend: bool = False,
    with_kwargs: bool = False,
    always_call: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a forward hook on the module.

The hook will be called every time after :func:forward has computed an output.

If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after :func:forward is called. The hook should have the following signature::

hook(module, args, output) -> None or modified output

If with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature::

hook(module, args, kwargs, output) -> None or modified output

Parameters:

Name Type Description Default
hook Callable The user defined hook to be registered. None
prepend bool If True, the provided hook will be fired
before all existing forward hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing forward hooks on
this :class:torch.nn.modules.Module. Note that global
forward hooks registered with
:func:register_module_forward_hook will fire before all hooks
registered by this method.
Default: False
None
with_kwargs bool If True, the hook will be passed the
kwargs given to the forward function.
Default: False
None
always_call bool If True the hook will be run regardless of
whether an exception is raised while calling the Module.
Default: False
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_forward_hook(
        self,
        hook: Union[
            Callable[[T, Tuple[Any, ...], Any], Optional[Any]],
            Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]],
        ],
        *,
        prepend: bool = False,
        with_kwargs: bool = False,
        always_call: bool = False,
    ) -> RemovableHandle:
        r"""Register a forward hook on the module.

        The hook will be called every time after :func:`forward` has computed an output.

        If ``with_kwargs`` is ``False`` or not specified, the input contains only
        the positional arguments given to the module. Keyword arguments won't be
        passed to the hooks and only to the ``forward``. The hook can modify the
        output. It can modify the input inplace but it will not have effect on
        forward since this is called after :func:`forward` is called. The hook
        should have the following signature::

            hook(module, args, output) -> None or modified output

        If ``with_kwargs`` is ``True``, the forward hook will be passed the
        ``kwargs`` given to the forward function and be expected to return the
        output possibly modified. The hook should have the following signature::

            hook(module, args, kwargs, output) -> None or modified output

        Args:
            hook (Callable): The user defined hook to be registered.
            prepend (bool): If ``True``, the provided ``hook`` will be fired
                before all existing ``forward`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``forward`` hooks on
                this :class:`torch.nn.modules.Module`. Note that global
                ``forward`` hooks registered with
                :func:`register_module_forward_hook` will fire before all hooks
                registered by this method.
                Default: ``False``
            with_kwargs (bool): If ``True``, the ``hook`` will be passed the
                kwargs given to the forward function.
                Default: ``False``
            always_call (bool): If ``True`` the ``hook`` will be run regardless of
                whether an exception is raised while calling the Module.
                Default: ``False``

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = RemovableHandle(
            self._forward_hooks,
            extra_dict=[
                self._forward_hooks_with_kwargs,
                self._forward_hooks_always_called,
            ],
        )
        self._forward_hooks[handle.id] = hook
        if with_kwargs:
            self._forward_hooks_with_kwargs[handle.id] = True
        if always_call:
            self._forward_hooks_always_called[handle.id] = True
        if prepend:
            self._forward_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_forward_pre_hook

def register_forward_pre_hook(
    self,
    hook: Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]],
    *,
    prepend: bool = False,
    with_kwargs: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a forward pre-hook on the module.

The hook will be called every time before :func:forward is invoked.

If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature::

hook(module, args) -> None or modified input

If with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature::

hook(module, args, kwargs) -> None or a tuple of modified input and kwargs

Parameters:

Name Type Description Default
hook Callable The user defined hook to be registered. None
prepend bool If true, the provided hook will be fired before
all existing forward_pre hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing forward_pre hooks
on this :class:torch.nn.modules.Module. Note that global
forward_pre hooks registered with
:func:register_module_forward_pre_hook will fire before all
hooks registered by this method.
Default: False
None
with_kwargs bool If true, the hook will be passed the kwargs
given to the forward function.
Default: False
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_forward_pre_hook(
        self,
        hook: Union[
            Callable[[T, Tuple[Any, ...]], Optional[Any]],
            Callable[
                [T, Tuple[Any, ...], Dict[str, Any]],
                Optional[Tuple[Any, Dict[str, Any]]],
            ],
        ],
        *,
        prepend: bool = False,
        with_kwargs: bool = False,
    ) -> RemovableHandle:
        r"""Register a forward pre-hook on the module.

        The hook will be called every time before :func:`forward` is invoked.


        If ``with_kwargs`` is false or not specified, the input contains only
        the positional arguments given to the module. Keyword arguments won't be
        passed to the hooks and only to the ``forward``. The hook can modify the
        input. User can either return a tuple or a single modified value in the
        hook. We will wrap the value into a tuple if a single value is returned
        (unless that value is already a tuple). The hook should have the
        following signature::

            hook(module, args) -> None or modified input

        If ``with_kwargs`` is true, the forward pre-hook will be passed the
        kwargs given to the forward function. And if the hook modifies the
        input, both the args and kwargs should be returned. The hook should have
        the following signature::

            hook(module, args, kwargs) -> None or a tuple of modified input and kwargs

        Args:
            hook (Callable): The user defined hook to be registered.
            prepend (bool): If true, the provided ``hook`` will be fired before
                all existing ``forward_pre`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``forward_pre`` hooks
                on this :class:`torch.nn.modules.Module`. Note that global
                ``forward_pre`` hooks registered with
                :func:`register_module_forward_pre_hook` will fire before all
                hooks registered by this method.
                Default: ``False``
            with_kwargs (bool): If true, the ``hook`` will be passed the kwargs
                given to the forward function.
                Default: ``False``

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = RemovableHandle(
            self._forward_pre_hooks, extra_dict=self._forward_pre_hooks_with_kwargs
        )
        self._forward_pre_hooks[handle.id] = hook
        if with_kwargs:
            self._forward_pre_hooks_with_kwargs[handle.id] = True

        if prepend:
            self._forward_pre_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_full_backward_hook

def register_full_backward_hook(
    self,
    hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]],
    prepend: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a backward hook on the module.

The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature::

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The :attr:grad_input and :attr:grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of :attr:grad_input in subsequent computations. :attr:grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in :attr:grad_input and :attr:grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.

.. warning :: Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Parameters:

Name Type Description Default
hook Callable The user-defined hook to be registered. None
prepend bool If true, the provided hook will be fired before
all existing backward hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing backward hooks on
this :class:torch.nn.modules.Module. Note that global
backward hooks registered with
:func:register_module_full_backward_hook will fire before
all hooks registered by this method.
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_full_backward_hook(
        self,
        hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],
        prepend: bool = False,
    ) -> RemovableHandle:
        r"""Register a backward hook on the module.

        The hook will be called every time the gradients with respect to a module
        are computed, i.e. the hook will execute if and only if the gradients with
        respect to module outputs are computed. The hook should have the following
        signature::

            hook(module, grad_input, grad_output) -> tuple(Tensor) or None

        The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
        with respect to the inputs and outputs respectively. The hook should
        not modify its arguments, but it can optionally return a new gradient with
        respect to the input that will be used in place of :attr:`grad_input` in
        subsequent computations. :attr:`grad_input` will only correspond to the inputs given
        as positional arguments and all kwarg arguments are ignored. Entries
        in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
        arguments.

        For technical reasons, when this hook is applied to a Module, its forward function will
        receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
        of each Tensor returned by the Module's forward function.

        .. warning ::
            Modifying inputs or outputs inplace is not allowed when using backward hooks and
            will raise an error.

        Args:
            hook (Callable): The user-defined hook to be registered.
            prepend (bool): If true, the provided ``hook`` will be fired before
                all existing ``backward`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``backward`` hooks on
                this :class:`torch.nn.modules.Module`. Note that global
                ``backward`` hooks registered with
                :func:`register_module_full_backward_hook` will fire before
                all hooks registered by this method.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``

        """
        if self._is_full_backward_hook is False:
            raise RuntimeError(
                "Cannot use both regular backward hooks and full backward hooks on a "
                "single Module. Please use only one of them."
            )

        self._is_full_backward_hook = True

        handle = RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        if prepend:
            self._backward_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_full_backward_pre_hook

def register_full_backward_pre_hook(
    self,
    hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]],
    prepend: bool = False
) -> torch.utils.hooks.RemovableHandle

Register a backward pre-hook on the module.

The hook will be called every time the gradients for the module are computed. The hook should have the following signature::

hook(module, grad_output) -> tuple[Tensor] or None

The :attr:grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of :attr:grad_output in subsequent computations. Entries in :attr:grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.

.. warning :: Modifying inputs inplace is not allowed when using backward hooks and will raise an error.

Parameters:

Name Type Description Default
hook Callable The user-defined hook to be registered. None
prepend bool If true, the provided hook will be fired before
all existing backward_pre hooks on this
:class:torch.nn.modules.Module. Otherwise, the provided
hook will be fired after all existing backward_pre hooks
on this :class:torch.nn.modules.Module. Note that global
backward_pre hooks registered with
:func:register_module_full_backward_pre_hook will fire before
all hooks registered by this method.
None

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_full_backward_pre_hook(
        self,
        hook: Callable[["Module", _grad_t], Union[None, _grad_t]],
        prepend: bool = False,
    ) -> RemovableHandle:
        r"""Register a backward pre-hook on the module.

        The hook will be called every time the gradients for the module are computed.
        The hook should have the following signature::

            hook(module, grad_output) -> tuple[Tensor] or None

        The :attr:`grad_output` is a tuple. The hook should
        not modify its arguments, but it can optionally return a new gradient with
        respect to the output that will be used in place of :attr:`grad_output` in
        subsequent computations. Entries in :attr:`grad_output` will be ``None`` for
        all non-Tensor arguments.

        For technical reasons, when this hook is applied to a Module, its forward function will
        receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
        of each Tensor returned by the Module's forward function.

        .. warning ::
            Modifying inputs inplace is not allowed when using backward hooks and
            will raise an error.

        Args:
            hook (Callable): The user-defined hook to be registered.
            prepend (bool): If true, the provided ``hook`` will be fired before
                all existing ``backward_pre`` hooks on this
                :class:`torch.nn.modules.Module`. Otherwise, the provided
                ``hook`` will be fired after all existing ``backward_pre`` hooks
                on this :class:`torch.nn.modules.Module`. Note that global
                ``backward_pre`` hooks registered with
                :func:`register_module_full_backward_pre_hook` will fire before
                all hooks registered by this method.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``

        """
        handle = RemovableHandle(self._backward_pre_hooks)
        self._backward_pre_hooks[handle.id] = hook
        if prepend:
            self._backward_pre_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

register_load_state_dict_post_hook

def register_load_state_dict_post_hook(
    self,
    hook
)

Register a post-hook to be run after module's :meth:~nn.Module.load_state_dict is called.

It should have the following signature:: hook(module, incompatible_keys) -> None

The module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.

The given incompatible_keys can be modified inplace if needed.

Note that the checks performed when calling :func:load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.

Returns:

Type Description
None :class:torch.utils.hooks.RemovableHandle:
a handle that can be used to remove the added hook by calling
handle.remove()
View Source
    def register_load_state_dict_post_hook(self, hook):
        r"""Register a post-hook to be run after module's :meth:`~nn.Module.load_state_dict` is called.

        It should have the following signature::
            hook(module, incompatible_keys) -> None

        The ``module`` argument is the current module that this hook is registered
        on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting
        of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``
        is a ``list`` of ``str`` containing the missing keys and
        ``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.

        The given incompatible_keys can be modified inplace if needed.

        Note that the checks performed when calling :func:`load_state_dict` with
        ``strict=True`` are affected by modifications the hook makes to
        ``missing_keys`` or ``unexpected_keys``, as expected. Additions to either
        set of keys will result in an error being thrown when ``strict=True``, and
        clearing out both missing and unexpected keys will avoid an error.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = RemovableHandle(self._load_state_dict_post_hooks)
        self._load_state_dict_post_hooks[handle.id] = hook
        return handle

register_load_state_dict_pre_hook

def register_load_state_dict_pre_hook(
    self,
    hook
)

Register a pre-hook to be run before module's :meth:~nn.Module.load_state_dict is called.

It should have the following signature:: hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950

Parameters:

Name Type Description Default
hook Callable Callable hook that will be invoked before
loading the state dict.
None
View Source
    def register_load_state_dict_pre_hook(self, hook):
        r"""Register a pre-hook to be run before module's :meth:`~nn.Module.load_state_dict` is called.

        It should have the following signature::
            hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None  # noqa: B950

        Arguments:
            hook (Callable): Callable hook that will be invoked before
                loading the state dict.
        """
        return self._register_load_state_dict_pre_hook(hook, with_module=True)

register_module

def register_module(
    self,
    name: str,
    module: Optional[ForwardRef('Module')]
) -> None

Alias for :func:add_module.

View Source
    def register_module(self, name: str, module: Optional["Module"]) -> None:
        r"""Alias for :func:`add_module`."""
        self.add_module(name, module)

register_parameter

def register_parameter(
    self,
    name: str,
    param: Optional[torch.nn.parameter.Parameter]
) -> None

Add a parameter to the module.

The parameter can be accessed as an attribute using given name.

Parameters:

Name Type Description Default
name str name of the parameter. The parameter can be accessed
from this module using the given name
None
param Parameter or None parameter to be added to the module. If
None, then operations that run on parameters, such as :attr:cuda,
are ignored. If None, the parameter is not included in the
module's :attr:state_dict.
None
View Source
    def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
        r"""Add a parameter to the module.

        The parameter can be accessed as an attribute using given name.

        Args:
            name (str): name of the parameter. The parameter can be accessed
                from this module using the given name
            param (Parameter or None): parameter to be added to the module. If
                ``None``, then operations that run on parameters, such as :attr:`cuda`,
                are ignored. If ``None``, the parameter is **not** included in the
                module's :attr:`state_dict`.
        """
        if "_parameters" not in self.__dict__:
            raise AttributeError(
                "cannot assign parameter before Module.__init__() call"
            )

        elif not isinstance(name, str):
            raise TypeError(
                f"parameter name should be a string. Got {torch.typename(name)}"
            )
        elif "." in name:
            raise KeyError('parameter name can\'t contain "."')
        elif name == "":
            raise KeyError('parameter name can\'t be empty string ""')
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError(f"attribute '{name}' already exists")

        if param is None:
            self._parameters[name] = None
        elif not isinstance(param, Parameter):
            raise TypeError(
                f"cannot assign '{torch.typename(param)}' object to parameter '{name}' "
                "(torch.nn.Parameter or None required)"
            )
        elif param.grad_fn:
            raise ValueError(
                f"Cannot assign non-leaf Tensor to parameter '{name}'. Model "
                f"parameters must be created explicitly. To express '{name}' "
                "as a function of another Tensor, compute the value in "
                "the forward() method."
            )
        else:
            for hook in _global_parameter_registration_hooks.values():
                output = hook(self, name, param)
                if output is not None:
                    param = output
            self._parameters[name] = param

register_state_dict_post_hook

def register_state_dict_post_hook(
    self,
    hook
)

Register a post-hook for the :meth:~torch.nn.Module.state_dict method.

It should have the following signature:: hook(module, state_dict, prefix, local_metadata) -> None

The registered hooks can modify the state_dict inplace.

View Source
    def register_state_dict_post_hook(self, hook):
        r"""Register a post-hook for the :meth:`~torch.nn.Module.state_dict` method.

        It should have the following signature::
            hook(module, state_dict, prefix, local_metadata) -> None

        The registered hooks can modify the ``state_dict`` inplace.
        """
        # In _register_state_dict_hook there was a bug described in
        # https://github.com/pytorch/pytorch/issues/117437 where the return value
        # was only respected for the root module but not child submodules.
        # We fix this in this public version by only allowing inplace modifications on
        # the state_dict by the hook. However, since hooks registered via both these
        # APIs will be added to `_state_dict_hooks` and the type of `_state_dict_hooks`
        # cannot be changed due to many dependencies on it, we mark a hook
        # as being registered via the public API by setting `_from_public_api` on it.
        # In the implementation of `state_dict`, if the callable does not have this
        # flag, the old behavior of respecting the return value will be preserved
        # for the root module, otherwise, we ensure that the hook returns None.
        hook._from_public_api = True
        handle = RemovableHandle(self._state_dict_hooks)
        self._state_dict_hooks[handle.id] = hook
        return handle

register_state_dict_pre_hook

def register_state_dict_pre_hook(
    self,
    hook
)

Register a pre-hook for the :meth:~torch.nn.Module.state_dict method.

It should have the following signature:: hook(module, prefix, keep_vars) -> None

The registered hooks can be used to perform pre-processing before the state_dict call is made.

View Source
    def register_state_dict_pre_hook(self, hook):
        r"""Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method.

        It should have the following signature::
            hook(module, prefix, keep_vars) -> None

        The registered hooks can be used to perform pre-processing before the ``state_dict``
        call is made.
        """
        handle = RemovableHandle(self._state_dict_pre_hooks)
        self._state_dict_pre_hooks[handle.id] = hook
        return handle

requires_grad_

def requires_grad_(
    self: ~T,
    requires_grad: bool = True
) -> ~T

Change if autograd should record operations on parameters in this module.

This method sets the parameters' :attr:requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

See :ref:locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.

Parameters:

Name Type Description Default
requires_grad bool whether autograd should record operations on
parameters in this module. Default: True.
None

Returns:

Type Description
Module self
View Source
    def requires_grad_(self: T, requires_grad: bool = True) -> T:
        r"""Change if autograd should record operations on parameters in this module.

        This method sets the parameters' :attr:`requires_grad` attributes
        in-place.

        This method is helpful for freezing part of the module for finetuning
        or training parts of a model individually (e.g., GAN training).

        See :ref:`locally-disable-grad-doc` for a comparison between
        `.requires_grad_()` and several similar mechanisms that may be confused with it.

        Args:
            requires_grad (bool): whether autograd should record operations on
                                  parameters in this module. Default: ``True``.

        Returns:
            Module: self
        """
        for p in self.parameters():
            p.requires_grad_(requires_grad)
        return self

set_extra_state

def set_extra_state(
    self,
    state: Any
) -> None

Set extra state contained in the loaded state_dict.

This function is called from :func:load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding

View Source
    def set_extra_state(self, state: Any) -> None:
        """Set extra state contained in the loaded `state_dict`.

        This function is called from :func:`load_state_dict` to handle any extra state
        found within the `state_dict`. Implement this function and a corresponding
        :func:`get_extra_state` for your module if you need to store extra state within its
        `state_dict`.

        Args:
            state (dict): Extra state from the `state_dict`
        """
        raise RuntimeError(
            "Reached a code path in Module.set_extra_state() that should never be called. "
            "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
            "to report this bug."
        )

set_submodule

def set_submodule(
    self,
    target: str,
    module: 'Module'
) -> None

Set the submodule given by target if it exists, otherwise throw an error.

For example, let's say you have an nn.Module A that looks like this:

.. code-block:: text

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To overide the Conv2d with a new submodule Linear, you would call set_submodule("net_b.net_c.conv", nn.Linear(33, 16)).

Parameters:

Name Type Description Default
target None The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
None
module None The module to set the submodule to. None

Raises:

Type Description
ValueError If the target string is empty
AttributeError If the target string references an invalid
path or resolves to something that is not an
nn.Module
View Source
    def set_submodule(self, target: str, module: "Module") -> None:
        """
        Set the submodule given by ``target`` if it exists, otherwise throw an error.

        For example, let's say you have an ``nn.Module`` ``A`` that
        looks like this:

        .. code-block:: text

            A(
                (net_b): Module(
                    (net_c): Module(
                        (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
                    )
                    (linear): Linear(in_features=100, out_features=200, bias=True)
                )
            )

        (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
        submodule ``net_b``, which itself has two submodules ``net_c``
        and ``linear``. ``net_c`` then has a submodule ``conv``.)

        To overide the ``Conv2d`` with a new submodule ``Linear``, you
        would call
        ``set_submodule("net_b.net_c.conv", nn.Linear(33, 16))``.

        Args:
            target: The fully-qualified string name of the submodule
                to look for. (See above example for how to specify a
                fully-qualified string.)
            module: The module to set the submodule to.

        Raises:
            ValueError: If the target string is empty
            AttributeError: If the target string references an invalid
                path or resolves to something that is not an
                ``nn.Module``
        """
        if target == "":
            raise ValueError("Cannot set the submodule without a target name!")

        atoms: List[str] = target.split(".")
        name = atoms.pop(-1)
        mod: torch.nn.Module = self

        for item in atoms:
            if not hasattr(mod, item):
                raise AttributeError(
                    mod._get_name() + " has no attribute `" + item + "`"
                )

            mod = getattr(mod, item)

            # Use isinstance instead of type here to also handle subclass of nn.Module
            if not isinstance(mod, torch.nn.Module):
                raise AttributeError("`" + item + "` is not an nn.Module")

        setattr(mod, name, module)

share_memory

def share_memory(
    self: ~T
) -> ~T

See :meth:torch.Tensor.share_memory_.

View Source
    def share_memory(self: T) -> T:
        r"""See :meth:`torch.Tensor.share_memory_`."""
        return self._apply(lambda t: t.share_memory_())

state_dict

def state_dict(
    self,
    *args,
    destination=None,
    prefix='',
    keep_vars=False
)

Return a dictionary containing references to the whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.

.. note:: The returned object is a shallow copy. It contains references to the module's parameters and buffers.

.. warning:: Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.

.. warning:: Please avoid the use of argument destination as it is not designed for end-users.

Parameters:

Name Type Description Default
destination dict If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an OrderedDict will be created and returned.
Default: None.
None
prefix str a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ''.
None
keep_vars bool by default the :class:~torch.Tensor s
returned in the state dict are detached from autograd. If it's
set to True, detaching will not be performed.
Default: False.
None

Returns:

Type Description
dict a dictionary containing a whole state of the module
View Source
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        r"""Return a dictionary containing references to the whole state of the module.

        Both parameters and persistent buffers (e.g. running averages) are
        included. Keys are corresponding parameter and buffer names.
        Parameters and buffers set to ``None`` are not included.

        .. note::
            The returned object is a shallow copy. It contains references
            to the module's parameters and buffers.

        .. warning::
            Currently ``state_dict()`` also accepts positional arguments for
            ``destination``, ``prefix`` and ``keep_vars`` in order. However,
            this is being deprecated and keyword arguments will be enforced in
            future releases.

        .. warning::
            Please avoid the use of argument ``destination`` as it is not
            designed for end-users.

        Args:
            destination (dict, optional): If provided, the state of module will
                be updated into the dict and the same object is returned.
                Otherwise, an ``OrderedDict`` will be created and returned.
                Default: ``None``.
            prefix (str, optional): a prefix added to parameter and buffer
                names to compose the keys in state_dict. Default: ``''``.
            keep_vars (bool, optional): by default the :class:`~torch.Tensor` s
                returned in the state dict are detached from autograd. If it's
                set to ``True``, detaching will not be performed.
                Default: ``False``.

        Returns:
            dict:
                a dictionary containing a whole state of the module

        Example::

            >>> # xdoctest: +SKIP("undefined vars")
            >>> module.state_dict().keys()
            ['bias', 'weight']

        """
        # TODO: Remove `args` and the parsing logic when BC allows.
        if len(args) > 0:
            # DeprecationWarning is ignored by default
            warnings.warn(
                "Positional args are being deprecated, use kwargs instead. Refer to "
                "https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
                " for details.",
                FutureWarning,
                stacklevel=2,
            )
            if destination is None:
                destination = args[0]
            if len(args) > 1 and prefix == "":
                prefix = args[1]
            if len(args) > 2 and keep_vars is False:
                keep_vars = args[2]

        if destination is None:
            destination = OrderedDict()
            destination._metadata = OrderedDict()

        local_metadata = dict(version=self._version)
        if hasattr(destination, "_metadata"):
            destination._metadata[prefix[:-1]] = local_metadata

        for hook in self._state_dict_pre_hooks.values():
            hook(self, prefix, keep_vars)
        self._save_to_state_dict(destination, prefix, keep_vars)
        for name, module in self._modules.items():
            if module is not None:
                module.state_dict(
                    destination=destination,
                    prefix=prefix + name + ".",
                    keep_vars=keep_vars,
                )
        for hook in self._state_dict_hooks.values():
            hook_result = hook(self, destination, prefix, local_metadata)
            if not getattr(hook, "_from_public_api", False):
                if hook_result is not None:
                    destination = hook_result
            else:
                if hook_result is not None:
                    raise RuntimeError("state_dict post-hook must return None")
        return destination

to

def to(
    self,
    *args,
    **kwargs
)

Move and/or cast the parameters and buffers.

This can be called as

.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:

.. function:: to(dtype, non_blocking=False) :noindex:

.. function:: to(tensor, non_blocking=False) :noindex:

.. function:: to(memory_format=torch.channels_last) :noindex:

Its signature is similar to :meth:torch.Tensor.to, but only accepts floating point or complex :attr:dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to :attr:dtype (if given). The integral parameters and buffers will be moved :attr:device, if that is given, but with dtypes unchanged. When :attr:non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device ( None class:torch.device): the desired device of the parameters
and buffers in this module
None
dtype ( None class:torch.dtype): the desired floating point or complex dtype of
the parameters and buffers in this module
None
tensor torch.Tensor Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
None
memory_format ( None class:torch.memory_format): the desired memory
format for 4D parameters and buffers in this module (keyword
only argument)
None

Returns:

Type Description
Module self
View Source
    def to(self, *args, **kwargs):
        r"""Move and/or cast the parameters and buffers.

        This can be called as

        .. function:: to(device=None, dtype=None, non_blocking=False)
           :noindex:

        .. function:: to(dtype, non_blocking=False)
           :noindex:

        .. function:: to(tensor, non_blocking=False)
           :noindex:

        .. function:: to(memory_format=torch.channels_last)
           :noindex:

        Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
        floating point or complex :attr:`dtype`\ s. In addition, this method will
        only cast the floating point or complex parameters and buffers to :attr:`dtype`
        (if given). The integral parameters and buffers will be moved
        :attr:`device`, if that is given, but with dtypes unchanged. When
        :attr:`non_blocking` is set, it tries to convert/move asynchronously
        with respect to the host if possible, e.g., moving CPU Tensors with
        pinned memory to CUDA devices.

        See below for examples.

        .. note::
            This method modifies the module in-place.

        Args:
            device (:class:`torch.device`): the desired device of the parameters
                and buffers in this module
            dtype (:class:`torch.dtype`): the desired floating point or complex dtype of
                the parameters and buffers in this module
            tensor (torch.Tensor): Tensor whose dtype and device are the desired
                dtype and device for all parameters and buffers in this module
            memory_format (:class:`torch.memory_format`): the desired memory
                format for 4D parameters and buffers in this module (keyword
                only argument)

        Returns:
            Module: self

        Examples::

            >>> # xdoctest: +IGNORE_WANT("non-deterministic")
            >>> linear = nn.Linear(2, 2)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1913, -0.3420],
                    [-0.5113, -0.2325]])
            >>> linear.to(torch.double)
            Linear(in_features=2, out_features=2, bias=True)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1913, -0.3420],
                    [-0.5113, -0.2325]], dtype=torch.float64)
            >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
            >>> gpu1 = torch.device("cuda:1")
            >>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
            Linear(in_features=2, out_features=2, bias=True)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1914, -0.3420],
                    [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
            >>> cpu = torch.device("cpu")
            >>> linear.to(cpu)
            Linear(in_features=2, out_features=2, bias=True)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.1914, -0.3420],
                    [-0.5112, -0.2324]], dtype=torch.float16)

            >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
            >>> linear.weight
            Parameter containing:
            tensor([[ 0.3741+0.j,  0.2382+0.j],
                    [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
            >>> linear(torch.ones(3, 2, dtype=torch.cdouble))
            tensor([[0.6122+0.j, 0.1150+0.j],
                    [0.6122+0.j, 0.1150+0.j],
                    [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)

        """
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
            *args, **kwargs
        )

        if dtype is not None:
            if not (dtype.is_floating_point or dtype.is_complex):
                raise TypeError(
                    "nn.Module.to only accepts floating point or complex "
                    f"dtypes, but got desired dtype={dtype}"
                )
            if dtype.is_complex:
                warnings.warn(
                    "Complex modules are a new feature under active development whose design may change, "
                    "and some modules might not work as expected when using complex tensors as parameters or buffers. "
                    "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
                    "if a complex module does not work as expected."
                )

        def convert(t):
            try:
                if convert_to_format is not None and t.dim() in (4, 5):
                    return t.to(
                        device,
                        dtype if t.is_floating_point() or t.is_complex() else None,
                        non_blocking,
                        memory_format=convert_to_format,
                    )
                return t.to(
                    device,
                    dtype if t.is_floating_point() or t.is_complex() else None,
                    non_blocking,
                )
            except NotImplementedError as e:
                if str(e) == "Cannot copy out of meta tensor; no data!":
                    raise NotImplementedError(
                        f"{e} Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() "
                        f"when moving module from meta to a different device."
                    ) from None
                else:
                    raise

        return self._apply(convert)

to_empty

def to_empty(
    self: ~T,
    *,
    device: Union[int, str, torch.device, NoneType],
    recurse: bool = True
) -> ~T

Move the parameters and buffers to the specified device without copying storage.

Parameters:

Name Type Description Default
device ( None class:torch.device): The desired device of the parameters
and buffers in this module.
None
recurse bool Whether parameters and buffers of submodules should
be recursively moved to the specified device.
None

Returns:

Type Description
Module self
View Source
    def to_empty(
        self: T, *, device: Optional[DeviceLikeType], recurse: bool = True
    ) -> T:
        r"""Move the parameters and buffers to the specified device without copying storage.

        Args:
            device (:class:`torch.device`): The desired device of the parameters
                and buffers in this module.
            recurse (bool): Whether parameters and buffers of submodules should
                be recursively moved to the specified device.

        Returns:
            Module: self
        """
        return self._apply(
            lambda t: torch.empty_like(t, device=device), recurse=recurse
        )

train

def train(
    self: ~T,
    mode: bool = True
) -> ~T

Set the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout, :class:BatchNorm, etc.

Parameters:

Name Type Description Default
mode bool whether to set training mode (True) or evaluation
mode (False). Default: True.
None

Returns:

Type Description
Module self
View Source
    def train(self: T, mode: bool = True) -> T:
        r"""Set the module in training mode.

        This has any effect only on certain modules. See documentations of
        particular modules for details of their behaviors in training/evaluation
        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
        etc.

        Args:
            mode (bool): whether to set training mode (``True``) or evaluation
                         mode (``False``). Default: ``True``.

        Returns:
            Module: self
        """
        if not isinstance(mode, bool):
            raise ValueError("training mode is expected to be boolean")
        self.training = mode
        for module in self.children():
            module.train(mode)
        return self

type

def type(
    self: ~T,
    dst_type: Union[torch.dtype, str]
) -> ~T

Casts all parameters and buffers to :attr:dst_type.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
dst_type type or string the desired type None

Returns:

Type Description
Module self
View Source
    def type(self: T, dst_type: Union[dtype, str]) -> T:
        r"""Casts all parameters and buffers to :attr:`dst_type`.

        .. note::
            This method modifies the module in-place.

        Args:
            dst_type (type or string): the desired type

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.type(dst_type))

xpu

def xpu(
    self: ~T,
    device: Union[int, torch.device, NoneType] = None
) -> ~T

Move all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int if specified, all parameters will be
copied to that device
None

Returns:

Type Description
Module self
View Source
    def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the XPU.

        This also makes associated parameters and buffers different objects. So
        it should be called before constructing optimizer if the module will
        live on XPU while being optimized.

        .. note::
            This method modifies the module in-place.

        Arguments:
            device (int, optional): if specified, all parameters will be
                copied to that device

        Returns:
            Module: self
        """
        return self._apply(lambda t: t.xpu(device))

zero_grad

def zero_grad(
    self,
    set_to_none: bool = True
) -> None

Reset gradients of all model parameters.

See similar function under :class:torch.optim.Optimizer for more context.

Parameters:

Name Type Description Default
set_to_none bool instead of setting to zero, set the grads to None.
See :meth:torch.optim.Optimizer.zero_grad for details.
None
View Source
    def zero_grad(self, set_to_none: bool = True) -> None:
        r"""Reset gradients of all model parameters.

        See similar function under :class:`torch.optim.Optimizer` for more context.

        Args:
            set_to_none (bool): instead of setting to zero, set the grads to None.
                See :meth:`torch.optim.Optimizer.zero_grad` for details.
        """
        if getattr(self, "_is_replica", False):
            warnings.warn(
                "Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
                "The parameters are copied (in a differentiable manner) from the original module. "
                "This means they are not leaf nodes in autograd and so don't accumulate gradients. "
                "If you need gradients in your forward method, consider using autograd.grad instead."
            )

        for p in self.parameters():
            if p.grad is not None:
                if set_to_none:
                    p.grad = None
                else:
                    if p.grad.grad_fn is not None:
                        p.grad.detach_()
                    else:
                        p.grad.requires_grad_(False)
                    p.grad.zero_()