Module fl_server_ai.uncertainty.mc_dropout¶
View Source
# SPDX-FileCopyrightText: 2024 Benedikt Franke <benedikt.franke@dlr.de>
# SPDX-FileCopyrightText: 2024 Florian Heinrich <florian.heinrich@dlr.de>
#
# SPDX-License-Identifier: Apache-2.0
import torch
from torch import Tensor
from torch.nn import Module
from torch.nn.modules.dropout import _DropoutNd
from typing import Any, Dict, Tuple
from fl_server_core.models import Model
from fl_server_core.utils.torch_serialization import is_torchscript_instance
from .base import UncertaintyBase
def set_dropout(model: Module, state: bool = True):
"""
Set the state of the dropout layers to enable or disable them even during inference.
Args:
model (Module): PyTorch module
state (bool, optional): Enable or disable dropout layers. Defaults to True.
"""
is_torchscript_model = is_torchscript_instance(model)
for m in model.modules():
name = m.original_name if is_torchscript_model else m.__class__.__name__
if isinstance(m, _DropoutNd) or name.lower().__contains__("dropout"):
m.train(mode=state)
class MCDropout(UncertaintyBase):
"""
Monte Carlo (MC) Dropout Uncertainty Estimation
Requirements:
- model with dropout layers
- T, number of samples per input (number of monte-carlo samples/forward passes)
References:
- Paper: Understanding Measures of Uncertainty for Adversarial Example Detection
<https://arxiv.org/abs/1803.08533>
- Code inspiration: <https://github.com/lsgos/uncertainty-adversarial-paper/tree/master>
"""
@classmethod
def prediction(cls, input: Tensor, model: Model) -> Tuple[torch.Tensor, Dict[str, Any]]:
options = cls.get_options(model)
N = options.get("N", 10)
softmax = options.get("softmax", False)
net: Module = model.get_torch_model()
net.eval()
set_dropout(net, state=True)
out_list = []
for _ in range(N):
output = net(input).detach()
# convert to probabilities if necessary
if softmax:
output = torch.softmax(output, dim=1)
out_list.append(output)
out = torch.stack(out_list, dim=0) # (n_mc, batch_size, n_classes)
inference = out.mean(dim=0)
uncertainty = cls.interpret(out)
return inference, uncertainty
Functions¶
set_dropout¶
Set the state of the dropout layers to enable or disable them even during inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | Module | PyTorch module | None |
state | bool | Enable or disable dropout layers. Defaults to True. | True |
View Source
def set_dropout(model: Module, state: bool = True):
"""
Set the state of the dropout layers to enable or disable them even during inference.
Args:
model (Module): PyTorch module
state (bool, optional): Enable or disable dropout layers. Defaults to True.
"""
is_torchscript_model = is_torchscript_instance(model)
for m in model.modules():
name = m.original_name if is_torchscript_model else m.__class__.__name__
if isinstance(m, _DropoutNd) or name.lower().__contains__("dropout"):
m.train(mode=state)
Classes¶
MCDropout¶
Monte Carlo (MC) Dropout Uncertainty Estimation
Requirements:
- model with dropout layers
- T, number of samples per input (number of monte-carlo samples/forward passes)
References:
- Paper: Understanding Measures of Uncertainty for Adversarial Example Detection https://arxiv.org/abs/1803.08533
- Code inspiration: https://github.com/lsgos/uncertainty-adversarial-paper/tree/master
View Source
class MCDropout(UncertaintyBase):
"""
Monte Carlo (MC) Dropout Uncertainty Estimation
Requirements:
- model with dropout layers
- T, number of samples per input (number of monte-carlo samples/forward passes)
References:
- Paper: Understanding Measures of Uncertainty for Adversarial Example Detection
<https://arxiv.org/abs/1803.08533>
- Code inspiration: <https://github.com/lsgos/uncertainty-adversarial-paper/tree/master>
"""
@classmethod
def prediction(cls, input: Tensor, model: Model) -> Tuple[torch.Tensor, Dict[str, Any]]:
options = cls.get_options(model)
N = options.get("N", 10)
softmax = options.get("softmax", False)
net: Module = model.get_torch_model()
net.eval()
set_dropout(net, state=True)
out_list = []
for _ in range(N):
output = net(input).detach()
# convert to probabilities if necessary
if softmax:
output = torch.softmax(output, dim=1)
out_list.append(output)
out = torch.stack(out_list, dim=0) # (n_mc, batch_size, n_classes)
inference = out.mean(dim=0)
uncertainty = cls.interpret(out)
return inference, uncertainty
Ancestors (in MRO)¶
- fl_server_ai.uncertainty.base.UncertaintyBase
- abc.ABC
Static methods¶
expected_entropy¶
Calculate the mean entropy of the predictive distribution across the MC samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions | torch.Tensor | predictions of shape (n_mc x batch_size x n_classes) | None |
Returns:
Type | Description |
---|---|
torch.Tensor | mean entropy of the predictive distribution |
View Source
@classmethod
def expected_entropy(cls, predictions: torch.Tensor) -> torch.Tensor:
"""
Calculate the mean entropy of the predictive distribution across the MC samples.
Args:
predictions (torch.Tensor): predictions of shape (n_mc x batch_size x n_classes)
Returns:
torch.Tensor: mean entropy of the predictive distribution
"""
return torch.distributions.Categorical(probs=predictions).entropy().mean(dim=0)
get_options¶
def get_options(
obj: fl_server_core.models.model.Model | fl_server_core.models.training.Training
) -> Dict[str, Any]
Get uncertainty options from training options.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj | Model | Training | The Model or Training object to retrieve options for. |
Returns:
Type | Description |
---|---|
Dict[str, Any] | Uncertainty options. |
Raises:
Type | Description |
---|---|
TypeError | If the given object is not a Model or Training. |
View Source
@classmethod
def get_options(cls, obj: Model | Training) -> Dict[str, Any]:
"""
Get uncertainty options from training options.
Args:
obj (Model | Training): The Model or Training object to retrieve options for.
Returns:
Dict[str, Any]: Uncertainty options.
Raises:
TypeError: If the given object is not a Model or Training.
"""
if isinstance(obj, Model):
return Training.objects.filter(model=obj) \
.values("options") \
.first()["options"] \
.get("uncertainty", {})
if isinstance(obj, Training):
return obj.options.get("uncertainty", {})
raise TypeError(f"Expected Model or Training, got {type(obj)}")
interpret¶
Interpret the different network (model) outputs and calculate the uncertainty.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
outputs | torch.Tensor | multiple network (model) outputs (N, batch_size, n_classes) | None |
View Source
@classmethod
def interpret(cls, outputs: torch.Tensor) -> Dict[str, Any]:
"""
Interpret the different network (model) outputs and calculate the uncertainty.
Args:
outputs (torch.Tensor): multiple network (model) outputs (N, batch_size, n_classes)
Return:
Tuple[torch.Tensor, Dict[str, Any]]: inference and uncertainty
"""
variance = outputs.var(dim=0)
std = outputs.std(dim=0)
if not (torch.all(outputs <= 1.) and torch.all(outputs >= 0.)):
return dict(variance=variance, std=std)
predictive_entropy = cls.predictive_entropy(outputs)
expected_entropy = cls.expected_entropy(outputs)
mutual_info = predictive_entropy - expected_entropy # see cls.mutual_information
return dict(
variance=variance,
std=std,
predictive_entropy=predictive_entropy,
expected_entropy=expected_entropy,
mutual_info=mutual_info,
)
mutual_information¶
Calculate the BALD (Bayesian Active Learning by Disagreement) of a model;
the difference between the mean of the entropy and the entropy of the mean of the predicted distribution on the predictions. This method is also sometimes referred to as the mutual information (MI).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions | torch.Tensor | predictions of shape (n_mc x batch_size x n_classes) | None |
Returns:
Type | Description |
---|---|
torch.Tensor | difference between the mean of the entropy and the entropy of the mean of the predicted distribution |
View Source
@classmethod
def mutual_information(cls, predictions: torch.Tensor) -> torch.Tensor:
"""
Calculate the BALD (Bayesian Active Learning by Disagreement) of a model;
the difference between the mean of the entropy and the entropy of the mean
of the predicted distribution on the predictions.
This method is also sometimes referred to as the mutual information (MI).
Args:
predictions (torch.Tensor): predictions of shape (n_mc x batch_size x n_classes)
Returns:
torch.Tensor: difference between the mean of the entropy and the entropy of the mean
of the predicted distribution
"""
return cls.predictive_entropy(predictions) - cls.expected_entropy(predictions)
prediction¶
def prediction(
input: torch.Tensor,
model: fl_server_core.models.model.Model
) -> Tuple[torch.Tensor, Dict[str, Any]]
Make a prediction using the given input and model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input | torch.Tensor | The input to make a prediction for. | None |
model | Model | The model to use for making the prediction. | None |
Returns:
Type | Description |
---|---|
Tuple[torch.Tensor, Dict[str, Any]] | The prediction and any associated uncertainty. |
View Source
@classmethod
def prediction(cls, input: Tensor, model: Model) -> Tuple[torch.Tensor, Dict[str, Any]]:
options = cls.get_options(model)
N = options.get("N", 10)
softmax = options.get("softmax", False)
net: Module = model.get_torch_model()
net.eval()
set_dropout(net, state=True)
out_list = []
for _ in range(N):
output = net(input).detach()
# convert to probabilities if necessary
if softmax:
output = torch.softmax(output, dim=1)
out_list.append(output)
out = torch.stack(out_list, dim=0) # (n_mc, batch_size, n_classes)
inference = out.mean(dim=0)
uncertainty = cls.interpret(out)
return inference, uncertainty
predictive_entropy¶
Calculate the entropy of the mean predictive distribution across the MC samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions | torch.Tensor | predictions of shape (n_mc x batch_size x n_classes) | None |
Returns:
Type | Description |
---|---|
torch.Tensor | entropy of the mean predictive distribution |
View Source
@classmethod
def predictive_entropy(cls, predictions: torch.Tensor) -> torch.Tensor:
"""
Calculate the entropy of the mean predictive distribution across the MC samples.
Args:
predictions (torch.Tensor): predictions of shape (n_mc x batch_size x n_classes)
Returns:
torch.Tensor: entropy of the mean predictive distribution
"""
return torch.distributions.Categorical(probs=predictions.mean(dim=0)).entropy()
to_json¶
Convert the given inference and uncertainty data to a JSON string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inference | torch.Tensor | The inference to convert. | None |
uncertainty | Dict[str, Any] | The uncertainty to convert. | None |
**json_kwargs | None | Additional keyword arguments to pass to json.dumps . |
None |
Returns:
Type | Description |
---|---|
str | A JSON string representation of the given inference and uncertainty data. |
View Source
@classmethod
def to_json(cls, inference: torch.Tensor, uncertainty: Dict[str, Any] = {}, **json_kwargs) -> str:
"""
Convert the given inference and uncertainty data to a JSON string.
Args:
inference (torch.Tensor): The inference to convert.
uncertainty (Dict[str, Any]): The uncertainty to convert.
**json_kwargs: Additional keyword arguments to pass to `json.dumps`.
Returns:
str: A JSON string representation of the given inference and uncertainty data.
"""
def prepare(v):
if isinstance(v, torch.Tensor):
return v.cpu().tolist()
if isinstance(v, np.ndarray): # cspell:ignore ndarray
return v.tolist()
if isinstance(v, dict):
return {k: prepare(_v) for k, _v in v.items()}
return v
return json.dumps({
"inference": inference.tolist(),
"uncertainty": prepare(uncertainty) if uncertainty else {},
}, **json_kwargs)