Skip to content

Module fl_server_ai.uncertainty.mc_dropout

View Source
# SPDX-FileCopyrightText: 2024 Benedikt Franke <benedikt.franke@dlr.de>
# SPDX-FileCopyrightText: 2024 Florian Heinrich <florian.heinrich@dlr.de>
#
# SPDX-License-Identifier: Apache-2.0

import torch
from torch import Tensor
from torch.nn import Module
from torch.nn.modules.dropout import _DropoutNd
from typing import Any, Dict, Tuple

from fl_server_core.models import Model
from fl_server_core.utils.torch_serialization import is_torchscript_instance

from .base import UncertaintyBase


def set_dropout(model: Module, state: bool = True):
    """
    Set the state of the dropout layers to enable or disable them even during inference.

    Args:
        model (Module): PyTorch module
        state (bool, optional): Enable or disable dropout layers. Defaults to True.
    """
    is_torchscript_model = is_torchscript_instance(model)
    for m in model.modules():
        name = m.original_name if is_torchscript_model else m.__class__.__name__
        if isinstance(m, _DropoutNd) or name.lower().__contains__("dropout"):
            m.train(mode=state)


class MCDropout(UncertaintyBase):
    """
    Monte Carlo (MC) Dropout Uncertainty Estimation

    Requirements:

    - model with dropout layers
    - T, number of samples per input (number of monte-carlo samples/forward passes)

    References:

    - Paper: Understanding Measures of Uncertainty for Adversarial Example Detection
             <https://arxiv.org/abs/1803.08533>
    - Code inspiration: <https://github.com/lsgos/uncertainty-adversarial-paper/tree/master>
    """

    @classmethod
    def prediction(cls, input: Tensor, model: Model) -> Tuple[torch.Tensor, Dict[str, Any]]:
        options = cls.get_options(model)
        N = options.get("N", 10)
        softmax = options.get("softmax", False)

        net: Module = model.get_torch_model()
        net.eval()
        set_dropout(net, state=True)

        out_list = []
        for _ in range(N):
            output = net(input).detach()
            # convert to probabilities if necessary
            if softmax:
                output = torch.softmax(output, dim=1)
            out_list.append(output)
        out = torch.stack(out_list, dim=0)  # (n_mc, batch_size, n_classes)

        inference = out.mean(dim=0)
        uncertainty = cls.interpret(out)
        return inference, uncertainty

Functions

set_dropout

def set_dropout(
    model: torch.nn.modules.module.Module,
    state: bool = True
)

Set the state of the dropout layers to enable or disable them even during inference.

Parameters:

Name Type Description Default
model Module PyTorch module None
state bool Enable or disable dropout layers. Defaults to True. True
View Source
def set_dropout(model: Module, state: bool = True):
    """
    Set the state of the dropout layers to enable or disable them even during inference.

    Args:
        model (Module): PyTorch module
        state (bool, optional): Enable or disable dropout layers. Defaults to True.
    """
    is_torchscript_model = is_torchscript_instance(model)
    for m in model.modules():
        name = m.original_name if is_torchscript_model else m.__class__.__name__
        if isinstance(m, _DropoutNd) or name.lower().__contains__("dropout"):
            m.train(mode=state)

Classes

MCDropout

class MCDropout(
    /,
    *args,
    **kwargs
)

Monte Carlo (MC) Dropout Uncertainty Estimation

Requirements:

  • model with dropout layers
  • T, number of samples per input (number of monte-carlo samples/forward passes)

References:

View Source
class MCDropout(UncertaintyBase):
    """
    Monte Carlo (MC) Dropout Uncertainty Estimation

    Requirements:

    - model with dropout layers
    - T, number of samples per input (number of monte-carlo samples/forward passes)

    References:

    - Paper: Understanding Measures of Uncertainty for Adversarial Example Detection
             <https://arxiv.org/abs/1803.08533>
    - Code inspiration: <https://github.com/lsgos/uncertainty-adversarial-paper/tree/master>
    """

    @classmethod
    def prediction(cls, input: Tensor, model: Model) -> Tuple[torch.Tensor, Dict[str, Any]]:
        options = cls.get_options(model)
        N = options.get("N", 10)
        softmax = options.get("softmax", False)

        net: Module = model.get_torch_model()
        net.eval()
        set_dropout(net, state=True)

        out_list = []
        for _ in range(N):
            output = net(input).detach()
            # convert to probabilities if necessary
            if softmax:
                output = torch.softmax(output, dim=1)
            out_list.append(output)
        out = torch.stack(out_list, dim=0)  # (n_mc, batch_size, n_classes)

        inference = out.mean(dim=0)
        uncertainty = cls.interpret(out)
        return inference, uncertainty

Ancestors (in MRO)

  • fl_server_ai.uncertainty.base.UncertaintyBase
  • abc.ABC

Static methods

expected_entropy

def expected_entropy(
    predictions: torch.Tensor
) -> torch.Tensor

Calculate the mean entropy of the predictive distribution across the MC samples.

Parameters:

Name Type Description Default
predictions torch.Tensor predictions of shape (n_mc x batch_size x n_classes) None

Returns:

Type Description
torch.Tensor mean entropy of the predictive distribution
View Source
    @classmethod
    def expected_entropy(cls, predictions: torch.Tensor) -> torch.Tensor:
        """
        Calculate the mean entropy of the predictive distribution across the MC samples.

        Args:
            predictions (torch.Tensor): predictions of shape (n_mc x batch_size x n_classes)

        Returns:
            torch.Tensor: mean entropy of the predictive distribution
        """
        return torch.distributions.Categorical(probs=predictions).entropy().mean(dim=0)

get_options

def get_options(
    obj: fl_server_core.models.model.Model | fl_server_core.models.training.Training
) -> Dict[str, Any]

Get uncertainty options from training options.

Parameters:

Name Type Description Default
obj Model Training The Model or Training object to retrieve options for.

Returns:

Type Description
Dict[str, Any] Uncertainty options.

Raises:

Type Description
TypeError If the given object is not a Model or Training.
View Source
    @classmethod
    def get_options(cls, obj: Model | Training) -> Dict[str, Any]:
        """
        Get uncertainty options from training options.

        Args:
            obj (Model | Training): The Model or Training object to retrieve options for.

        Returns:
            Dict[str, Any]: Uncertainty options.

        Raises:
            TypeError: If the given object is not a Model or Training.
        """
        if isinstance(obj, Model):
            return Training.objects.filter(model=obj) \
                .values("options") \
                .first()["options"] \
                .get("uncertainty", {})
        if isinstance(obj, Training):
            return obj.options.get("uncertainty", {})
        raise TypeError(f"Expected Model or Training, got {type(obj)}")

interpret

def interpret(
    outputs: torch.Tensor
) -> Dict[str, Any]

Interpret the different network (model) outputs and calculate the uncertainty.

Parameters:

Name Type Description Default
outputs torch.Tensor multiple network (model) outputs (N, batch_size, n_classes) None
View Source
    @classmethod
    def interpret(cls, outputs: torch.Tensor) -> Dict[str, Any]:
        """
        Interpret the different network (model) outputs and calculate the uncertainty.

        Args:
            outputs (torch.Tensor): multiple network (model) outputs (N, batch_size, n_classes)

        Return:
            Tuple[torch.Tensor, Dict[str, Any]]: inference and uncertainty
        """
        variance = outputs.var(dim=0)
        std = outputs.std(dim=0)
        if not (torch.all(outputs <= 1.) and torch.all(outputs >= 0.)):
            return dict(variance=variance, std=std)

        predictive_entropy = cls.predictive_entropy(outputs)
        expected_entropy = cls.expected_entropy(outputs)
        mutual_info = predictive_entropy - expected_entropy  # see cls.mutual_information
        return dict(
            variance=variance,
            std=std,
            predictive_entropy=predictive_entropy,
            expected_entropy=expected_entropy,
            mutual_info=mutual_info,
        )

mutual_information

def mutual_information(
    predictions: torch.Tensor
) -> torch.Tensor

Calculate the BALD (Bayesian Active Learning by Disagreement) of a model;

the difference between the mean of the entropy and the entropy of the mean of the predicted distribution on the predictions. This method is also sometimes referred to as the mutual information (MI).

Parameters:

Name Type Description Default
predictions torch.Tensor predictions of shape (n_mc x batch_size x n_classes) None

Returns:

Type Description
torch.Tensor difference between the mean of the entropy and the entropy of the mean
of the predicted distribution
View Source
    @classmethod
    def mutual_information(cls, predictions: torch.Tensor) -> torch.Tensor:
        """
        Calculate the BALD (Bayesian Active Learning by Disagreement) of a model;
        the difference between the mean of the entropy and the entropy of the mean
        of the predicted distribution on the predictions.
        This method is also sometimes referred to as the mutual information (MI).

        Args:
            predictions (torch.Tensor): predictions of shape (n_mc x batch_size x n_classes)

        Returns:
            torch.Tensor: difference between the mean of the entropy and the entropy of the mean
                    of the predicted distribution
        """
        return cls.predictive_entropy(predictions) - cls.expected_entropy(predictions)

prediction

def prediction(
    input: torch.Tensor,
    model: fl_server_core.models.model.Model
) -> Tuple[torch.Tensor, Dict[str, Any]]

Make a prediction using the given input and model.

Parameters:

Name Type Description Default
input torch.Tensor The input to make a prediction for. None
model Model The model to use for making the prediction. None

Returns:

Type Description
Tuple[torch.Tensor, Dict[str, Any]] The prediction and any associated uncertainty.
View Source
    @classmethod
    def prediction(cls, input: Tensor, model: Model) -> Tuple[torch.Tensor, Dict[str, Any]]:
        options = cls.get_options(model)
        N = options.get("N", 10)
        softmax = options.get("softmax", False)

        net: Module = model.get_torch_model()
        net.eval()
        set_dropout(net, state=True)

        out_list = []
        for _ in range(N):
            output = net(input).detach()
            # convert to probabilities if necessary
            if softmax:
                output = torch.softmax(output, dim=1)
            out_list.append(output)
        out = torch.stack(out_list, dim=0)  # (n_mc, batch_size, n_classes)

        inference = out.mean(dim=0)
        uncertainty = cls.interpret(out)
        return inference, uncertainty

predictive_entropy

def predictive_entropy(
    predictions: torch.Tensor
) -> torch.Tensor

Calculate the entropy of the mean predictive distribution across the MC samples.

Parameters:

Name Type Description Default
predictions torch.Tensor predictions of shape (n_mc x batch_size x n_classes) None

Returns:

Type Description
torch.Tensor entropy of the mean predictive distribution
View Source
    @classmethod
    def predictive_entropy(cls, predictions: torch.Tensor) -> torch.Tensor:
        """
        Calculate the entropy of the mean predictive distribution across the MC samples.

        Args:
            predictions (torch.Tensor): predictions of shape (n_mc x batch_size x n_classes)

        Returns:
            torch.Tensor: entropy of the mean predictive distribution
        """
        return torch.distributions.Categorical(probs=predictions.mean(dim=0)).entropy()

to_json

def to_json(
    inference: torch.Tensor,
    uncertainty: Dict[str, Any] = {},
    **json_kwargs
) -> str

Convert the given inference and uncertainty data to a JSON string.

Parameters:

Name Type Description Default
inference torch.Tensor The inference to convert. None
uncertainty Dict[str, Any] The uncertainty to convert. None
**json_kwargs None Additional keyword arguments to pass to json.dumps. None

Returns:

Type Description
str A JSON string representation of the given inference and uncertainty data.
View Source
    @classmethod
    def to_json(cls, inference: torch.Tensor, uncertainty: Dict[str, Any] = {}, **json_kwargs) -> str:
        """
        Convert the given inference and uncertainty data to a JSON string.

        Args:
            inference (torch.Tensor): The inference to convert.
            uncertainty (Dict[str, Any]): The uncertainty to convert.
            **json_kwargs: Additional keyword arguments to pass to `json.dumps`.

        Returns:
            str: A JSON string representation of the given inference and uncertainty data.
        """
        def prepare(v):
            if isinstance(v, torch.Tensor):
                return v.cpu().tolist()
            if isinstance(v, np.ndarray):  # cspell:ignore ndarray
                return v.tolist()
            if isinstance(v, dict):
                return {k: prepare(_v) for k, _v in v.items()}
            return v

        return json.dumps({
            "inference": inference.tolist(),
            "uncertainty": prepare(uncertainty) if uncertainty else {},
        }, **json_kwargs)